Klaus-Peter Koepfli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1091755/publications.pdf

Version: 2024-02-01

64 papers 9,900 citations

30 h-index 65 g-index

73 all docs

73 docs citations

times ranked

73

13180 citing authors

#	Article	IF	Citations
1	Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 2005, 438, 803-819.	27.8	2,215
2	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	12.6	1,583
3	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	27.8	1,139
4	Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 2011, 479, 359-364.	27.8	586
5	Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22311-22322.	7.1	517
6	Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs. Science, 2013, 342, 871-874.	12.6	438
7	The Genome 10K Project: A Way Forward. Annual Review of Animal Biosciences, 2015, 3, 57-111.	7.4	294
8	Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biology, 2008, 6, 10.	3.8	258
9	The tiger genome and comparative analysis with lion and snow leopard genomes. Nature Communications, 2013, 4, 2433.	12.8	217
10	Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution, 2010, 56, 49-63.	2.7	206
11	A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Molecular Phylogenetics and Evolution, 2003, 28, 225-240.	2.7	183
12	Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biology, 2015, 16, 277.	8.8	167
13	Extensive population genetic structure in the giraffe. BMC Biology, 2007, 5, 57.	3.8	163
14	Genome-wide Evidence Reveals that African and Eurasian Golden Jackals Are Distinct Species. Current Biology, 2015, 25, 2158-2165.	3.9	156
15	Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, morphology and the Great American Interchange. Molecular Phylogenetics and Evolution, 2007, 43, 1076-1095.	2.7	116
16	Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nature Ecology and Evolution, 2018, 2, 1479-1491.	7.8	113
17	Interspecific Gene Flow Shaped the Evolution of the Genus Canis. Current Biology, 2018, 28, 3441-3449.e5.	3.9	110
18	Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences. Journal of Zoology, 1998, 246, 401-416.	1.7	99

#	Article	IF	CITATIONS
19	Pangolin genomes and the evolution of mammalian scales and immunity. Genome Research, 2016, 26, 1312-1322.	5.5	95
20	Molecular systematics of the Hyaenidae: Relationships of a relictual lineage resolved by a molecular supermatrix. Molecular Phylogenetics and Evolution, 2006, 38, 603-620.	2.7	92
21	Evolution of a Major Drug Metabolizing Enzyme Defect in the Domestic Cat and Other Felidae: Phylogenetic Timing and the Role of Hypercarnivory. PLoS ONE, 2011, 6, e18046.	2.5	71
22	The evolutionary history of extinct and living lions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10927-10934.	7.1	70
23	Type I Sts Markers Are More Informative than Cytochrome b in Phylogenetic Reconstruction of the Mustelidae (Mammalia: Carnivora). Systematic Biology, 2003, 52, 571-593.	5. 6	68
24	Sex identification of the Eurasian otter Lutra lutra by PCR typing of spraints. Conservation Genetics, 2000, 1, 181-183.	1.5	66
25	Whole-genome analysis of giraffe supports four distinct species. Current Biology, 2021, 31, 2929-2938.e5.	3.9	49
26	Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Molecular Biology and Evolution, 2019, 36, 2631-2655.	8.9	48
27	GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data. GigaScience, 2020, 9, .	6.4	48
28	Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens. Current Biology, 2020, 30, 5018-5025.e5.	3.9	34
29	Establishing the foundation for an applied molecular taxonomy of otters in Southeast Asia. Conservation Genetics, 2008, 9, 1589-1604.	1.5	33
30	Evolutionary history of the Falklands wolf. Current Biology, 2009, 19, R937-R938.	3.9	33
31	Population Genomic Analysis of North American Eastern Wolves (Canis lycaon) Supports Their Conservation Priority Status. Genes, 2018, 9, 606.	2.4	32
32	Taxonomic revision of the genus <i>Galictis</i> (Carnivora: Mustelidae): species delimitation, morphological diagnosis, and refined mapping of geographical distribution. Zoological Journal of the Linnean Society, 2013, 167, 449-472.	2.3	31
33	Cryptic phylogeographic history sheds light on the generation of species diversity in skyâ€island mountains. Journal of Biogeography, 2019, 46, 2232-2247.	3.0	31
34	Annotated features of domestic cat – Felis catus genome. GigaScience, 2014, 3, 13.	6.4	30
35	Robust forensic matching of confiscated horns to individual poached African rhinoceros. Current Biology, 2018, 28, R13-R14.	3.9	27
36	Chromosomalâ€level genome assembly of the scimitarâ€horned oryx: Insights into diversity and demography of a species extinct in the wild. Molecular Ecology Resources, 2020, 20, 1668-1681.	4.8	26

3

#	Article	IF	Citations
37	Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Molecular Ecology, 2021, 30, 5949-5965.	3.9	26
38	Breeding Centers, Private Ranches, and Genomics for Creating Sustainable Wildlife Populations. BioScience, 2019, 69, 928-943.	4.9	25
39	Comparative genomics provides new insights into the remarkable adaptations of the African wild dog (Lycaon pictus). Scientific Reports, 2019, 9, 8329.	3.3	23
40	Phylogeography and Demographic History of the Neotropical Otter (Lontra longicaudis). Journal of Heredity, 2012, 103, 479-492.	2.4	22
41	The Population Origins and Expansion of Feral Cats in Australia. Journal of Heredity, 2016, 107, 104-114.	2.4	21
42	Improving draft genome contiguity with reference-derived in silico mate-pair libraries. GigaScience, $2018, 7, .$	6.4	19
43	Whole Genome Sequencing and Re-sequencing of the Sable Antelope (<i>Hippotragus niger</i>): A Resource for Monitoring Diversity in <i>ex Situ</i> and <i>in Situ</i> Populations. G3: Genes, Genomes, Genetics, 2019, 9, 1785-1793.	1.8	18
44	Comparison of genomic diversity and structure of sable antelope (<i>Hippotragus niger</i>) in zoos, conservation centers, and private ranches in North America. Evolutionary Applications, 2020, 13, 2143-2154.	3.1	18
45	Are pangolins scapegoats of the COVIDâ€19 outbreakâ€CoV transmission and pathology evidence?. Conservation Letters, 2020, 13, e12754.	5.7	17
46	De novo sequencing, assembly and analysis of eight different transcriptomes from the Malayan pangolin. Scientific Reports, 2016, 6, 28199.	3.3	16
47	Towards resolving taxonomic uncertainties in wolf, dog and jackal lineages of Africa, Eurasia and Australasia. Journal of Zoology, 2022, 316, 155-168.	1.7	15
48	Phylogenomics of the world's otters. Current Biology, 2022, 32, 3650-3658.e4.	3.9	14
49	Phylogeographic and diversification patterns of the white-nosed coati (Nasua narica): Evidence for south-to-north colonization of North America. Molecular Phylogenetics and Evolution, 2019, 131, 149-163.	2.7	12
50	Chromosome-Level Genome Assemblies Expand Capabilities of Genomics for Conservation Biology. Genes, 2021, 12, 1336.	2.4	12
51	Genomic analyses reveal rangeâ€wide devastation of sea otter populations. Molecular Ecology, 2023, 32, 281-298.	3.9	12
52	Diversity and Paleodemography of the Addax (Addax nasomaculatus), a Saharan Antelope on the Verge of Extinction. Genes, 2021, 12, 1236.	2.4	8
53	Multiple types of genomic variation contribute to adaptive traits in the mustelid subfamily Guloninae. Molecular Ecology, 2022, 31, 2898-2919.	3.9	8
54	Genetic analysis of Turkish martens: Do two species of the genus <i>Martes</i> occur in Anatolia?. Zoologica Scripta, 2018, 47, 390-403.	1.7	7

#	Article	IF	CITATIONS
55	A draft genome assembly of spotted hyena, Crocuta crocuta. Scientific Data, 2020, 7, 126.	5.3	6
56	A collective statement in support of saving pangolins. Science of the Total Environment, 2022, 824, 153666.	8.0	6
57	Draft de novo Genome Assembly of the Elusive Jaguarundi, Puma yagouaroundi. Journal of Heredity, 2021, 112, 540-548.	2.4	5
58	Genome Sequencing of a Gray Wolf from Peninsular India Provides New Insights into the Evolution and Hybridization of Gray Wolves. Genome Biology and Evolution, 2022, 14, .	2.5	5
59	<i>De novo</i> whole-genome assembly and resequencing resources for the roan (<i>Hippotragus) Tj ETQq$1\ 1\ 0$</i>	.784314 r	gBŢ/Overlock
60	Characteristics of the complete mitochondrial genome of the monotypic genus Arctictis (Family:) Tj ETQq0 0 0 r	gBT Over	lock 10 Tf 50
61	Molecular Phylogeny and Evolution of Amazon Parrots in the Greater Antilles. Genes, 2021, 12, 608.	2.4	2
62	Applying genomics to metapopulation management in North American insurance populations of southern sable antelope (Hippotragus niger niger) and addra gazelle (Nanger dama ruficollis). Global Ecology and Conservation, 2022, 33, e01969.	2.1	2
63	Insights from the rescue and breeding management of Cuvier's gazelle (<i>Gazella cuvieri</i>) through wholeâ€genome sequencing. Evolutionary Applications, 2022, 15, 351-364.	3.1	2
64	Evolution: A New Cat Species Emerges. Current Biology, 2013, 23, R1103-R1105.	3.9	0