Tao Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10915726/publications.pdf Version: 2024-02-01

TAO SHEN

#	Article	IF	CITATIONS
1	Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radical Biology and Medicine, 2011, 50, 624-632.	2.9	214
2	Hydrogen peroxide inhibits mTOR signaling by activation of AMPKα leading to apoptosis of neuronal cells. Laboratory Investigation, 2010, 90, 762-773.	3.7	207
3	Calcium Signaling Is Involved in Cadmium-Induced Neuronal Apoptosis via Induction of Reactive Oxygen Species and Activation of MAPK/mTOR Network. PLoS ONE, 2011, 6, e19052.	2.5	158
4	The Role of Cdc25A in the Regulation of Cell Proliferation and Apoptosis. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 631-639.	1.7	154
5	Rapamycin Inhibits Cytoskeleton Reorganization and Cell Motility by Suppressing RhoA Expression and Activity. Journal of Biological Chemistry, 2010, 285, 38362-38373.	3.4	120
6	Cryptotanshinone Inhibits Cancer Cell Proliferation by Suppressing Mammalian Target of Rapamycin–Mediated Cyclin D1 Expression and Rb Phosphorylation. Cancer Prevention Research, 2010, 3, 1015-1025.	1.5	97
7	The antitumor activity of the fungicide ciclopirox. International Journal of Cancer, 2010, 127, 2467-2477.	5.1	88
8	Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway. Oncotarget, 2014, 5, 10140-10150.	1.8	75
9	Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis, 2012, 33, 868-875.	2.8	68
10	Cryptotanshinone Activates p38/JNK and Inhibits Erk1/2 Leading to Caspase-Independent Cell Death in Tumor Cells. Cancer Prevention Research, 2012, 5, 778-787.	1.5	68
11	Preclinical Modeling of KIF5B–RET Fusion Lung Adenocarcinoma. Molecular Cancer Therapeutics, 2016, 15, 2521-2529.	4.1	63
12	Drug resistance profiles of mutations in the RET kinase domain. British Journal of Pharmacology, 2018, 175, 3504-3515.	5.4	61
13	Rapamycin Inhibits Lymphatic Endothelial Cell Tube Formation by Downregulating Vascular Endothelial Growth Factor Receptor 3 Protein Expression. Neoplasia, 2012, 14, 228-237.	5.3	60
14	Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis, 2014, 35, 192-200.	2.8	49
15	Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. Journal of Biological Chemistry, 2019, 294, 10428-10437.	3.4	43
16	Repositioning the Old Fungicide Ciclopirox for New Medical Uses. Current Pharmaceutical Design, 2016, 22, 4443-4450.	1.9	41
17	Rapamycin Inhibits IGF-1 Stimulated Cell Motility through PP2A Pathway. PLoS ONE, 2010, 5, e10578.	2.5	36
18	The L730V/I RET roof mutations display different activities toward pralsetinib and selpercatinib. Npj Precision Oncology, 2021, 5, 48.	5.4	30

TAO SHEN

#	Article	IF	CITATIONS
19	Ciclopirox inhibits cancer cell proliferation by suppression of Cdc25A. Genes and Cancer, 2017, 8, 505-516.	1.9	29
20	Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK. Biochemical Pharmacology, 2016, 116, 39-50.	4.4	26
21	Cryptotanshinone Inhibits Lymphatic Endothelial Cell Tube Formation by Suppressing VEGFR-3/ERK and Small GTPase Pathways. Cancer Prevention Research, 2011, 4, 2083-2091.	1.5	20
22	Iron chelation inhibits mTORC1 signaling involving activation of AMPK and REDD1/Bnip3 pathways. Oncogene, 2020, 39, 5201-5213.	5.9	18
23	Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation. Genes and Cancer, 2018, 9, 39-52.	1.9	13
24	RET kinase alterations in targeted cancer therapy. , 2020, 3, 472-481.		7