Marie Lothon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1091562/publications.pdf Version: 2024-02-01

MARIELOTHON

#	Article	IF	CITATIONS
1	Observation of the Diurnal Cycle in the Low Troposphere of West Africa. Monthly Weather Review, 2008, 136, 3477-3500.	1.4	125
2	A Comparison of Higher-Order Vertical Velocity Moments in the Convective Boundary Layer from Lidar with In Situ Measurements and Large-Eddy Simulation. Boundary-Layer Meteorology, 2012, 143, 107-123.	2.3	73
3	Coherence and Scale of Vertical Velocity in the Convective Boundary Layer from a Doppler Lidar. Boundary-Layer Meteorology, 2006, 121, 521-536.	2.3	70
4	Doppler Lidar Measurements of Vertical Velocity Spectra in the Convective Planetary Boundary Layer. Boundary-Layer Meteorology, 2009, 132, 205-226.	2.3	57
5	An overview of the diurnal cycle of the atmospheric boundary layer during the West African monsoon season: results from the 2016 observational campaign. Atmospheric Chemistry and Physics, 2018, 18, 2913-2928.	4.9	48
6	Life Cycle of a Mesoscale Circular Gust Front Observed by a C-Band Doppler Radar in West Africa. Monthly Weather Review, 2011, 139, 1370-1388.	1.4	43
7	Föhn in the Rhine Valley during MAP: A review of its multiscale dynamics in complex valley geometry. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 897-916.	2.7	38
8	Impact of Boundary-Layer Processes on Near-Surface Turbulence Within the West African Monsoon. Boundary-Layer Meteorology, 2010, 136, 1-23.	2.3	34
9	Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmospheric Chemistry and Physics, 2016, 16, 9489-9504.	4.9	32
10	Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: an observation-based analysis of conditions and processes. Atmospheric Chemistry and Physics, 2019, 19, 663-681.	4.9	29
11	Transition Periods in the Diurnally-Varying Atmospheric Boundary Layer Over Land. Boundary-Layer Meteorology, 2020, 177, 205-223.	2.3	29
12	Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign. Atmospheric Measurement Techniques, 2016, 9, 4901-4913.	3.1	28
13	Turbulence kinetic energy budget during the afternoon transition – PartÂ1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days. Atmospheric Chemistry and Physics, 2016, 16, 8849-8872.	4.9	25
14	Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon. Atmospheric Measurement Techniques, 2016, 9, 4375-4386.	3.1	24
15	Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign. Atmospheric Chemistry and Physics, 2016, 16, 8983-9002.	4.9	21
16	Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign. Atmospheric Chemistry and Physics, 2019, 19, 9495-9514.	4.9	21
17	Experimental study of five fo¨hn events during the Mesoscale Alpine Programme: From synoptic scale to turbulence. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2171-2193.	2.7	20
18	Impact of coherent eddies on airborne measurements of vertical turbulent fluxes. Boundary-Layer Meteorology, 2007, 124, 425-447.	2.3	20

MARIE LOTHON

#	Article	IF	CITATIONS
19	Characterization of valley flows within two confluent valleys under stable conditions: observations from the KASCADE field experiment. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1886-1902.	2.7	20
20	Observations and Large-Eddy Simulations of Entrainment in the Sheared Sahelian Boundary Layer. Boundary-Layer Meteorology, 2012, 142, 79-101.	2.3	19
21	OVLI-TA: An Unmanned Aerial System for Measuring Profiles and Turbulence in the Atmospheric Boundary Layer. Sensors, 2019, 19, 581.	3.8	18
22	The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study. Atmospheric Chemistry and Physics, 2019, 19, 1281-1299.	4.9	16
23	Low-level stratiform clouds and dynamical features observed within the southern West African monsoon. Atmospheric Chemistry and Physics, 2019, 19, 8979-8997.	4.9	14
24	Conceptual model of diurnal cycle of low-level stratiform clouds over southern West Africa. Atmospheric Chemistry and Physics, 2020, 20, 2263-2275.	4.9	13
25	Results of UHF radar observation of the nocturnal low-level jet for wind energy applications. Acta Geophysica, 2012, 60, 1413-1453.	2.0	10
26	Constant volume balloons measurements in the urban Marseille and Fos–Berre industrial ozone plumes during ESCOMPTE experiment. Atmospheric Environment, 2008, 42, 5589-5601.	4.1	9
27	Nearâ€monochromatic ducted gravity waves associated with a convective system close to the Pyrenees. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1320-1332.	2.7	9
28	EUREC ⁴ A observations from the SAFIRE ATR42 aircraft. Earth System Science Data, 2022, 14, 2021-2064.	9.9	9
29	Case Study and Climatological Analysis of Upper-Tropospheric Jet Stream and Stratosphere–Troposphere Exchanges Using VHF Profilers and Radionuclide Measurements in France. Journal of Applied Meteorology and Climatology, 2017, 56, 3081-3097.	1.5	8
30	Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3). Geoscientific Model Development, 2021, 14, 3939-3967.	3.6	8
31	The diurnal stratocumulus-to-cumulus transition over land in southern West Africa. Atmospheric Chemistry and Physics, 2020, 20, 2735-2754.	4.9	7
32	Studying the Afternoon Transition of the Planetary Boundary Layer. Eos, 2010, 91, 253-254.	0.1	6
33	Turbulence kinetic energy budget during the afternoon transition – Part 2: AÂsimple TKE model. Atmospheric Chemistry and Physics, 2016, 16, 8873-8898.	4.9	6
34	The Influence of Synoptic Circulations and Local Processes on Temperature Anomalies at Three French Observatories. Journal of Applied Meteorology and Climatology, 2017, 56, 141-158.	1.5	6
35	What controls the formation of nocturnal low-level stratus clouds over southern West Africa during the monsoon season?. Atmospheric Chemistry and Physics, 2019, 19, 13489-13506.	4.9	6
36	Can We Use Satellite-Based Soil-Moisture Products at High Resolution to Investigate Land-Use Differences and Land–Atmosphere Interactions? A Case Study in the Savanna. Remote Sensing, 2020, 12, 1701.	4.0	6

MARIE LOTHON

#	Article	IF	CITATIONS
37	The EUREC ⁴ A turbulence dataset derived from the SAFIRE ATR 42 aircraft. Earth System Science Data, 2021, 13, 3379-3398.	9.9	6
38	Breakup of nocturnal low-level stratiform clouds during the southern West African monsoon season. Atmospheric Chemistry and Physics, 2021, 21, 2027-2051.	4.9	4
39	Special Issue of the 15th International Symposium for the Advancement of Boundary-Layer Remote Sensing (ISARS), 28–30 June 2010, Paris, France. Boundary-Layer Meteorology, 2012, 143, 1-2.	2.3	0
40	A meteorological dataset of the West African monsoon during the 2016 DACCIWA campaign. Scientific Data, 2022, 9, 174.	5.3	0