Kumar Mallem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10913543/publications.pdf

Version: 2024-02-01

11	153	7	9
papers	citations	h-index	g-index
11	11	11	187 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Molybdenum oxide: A superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Materials Research Bulletin, 2019, 110, 90-96.	5.2	40
2	Influence of small size pyramid texturing on contact shading loss and performance analysis of Ag-screen printed mono crystalline silicon solar cells. Materials Science in Semiconductor Processing, 2018, 85, 68-75.	4.0	35
3	Ambient annealing influence on surface passivation and stoichiometric analysis of molybdenum oxide layer for carrier selective contact solar cells. Materials Science in Semiconductor Processing, 2019, 91, 267-274.	4.0	21
4	Using the light scattering properties of multi-textured AZO films on inverted hemisphere textured glass surface morphologies to improve the efficiency of silicon thin film solar cells. Applied Surface Science, 2018, 447, 866-875.	6.1	18
5	Efficient light trapping for maskless large area randomly textured glass structures with various haze ratios in silicon thin film solar cells. Solar Energy, 2018, 173, 1173-1180.	6.1	12
6	Effects of post deposition annealing atmosphere on interfacial and electrical properties of HfO2/Ge3N4 gate stacks. Thin Solid Films, 2019, 675, 16-22.	1.8	10
7	Versatile Hole CarrierÂSelective MoOx Contact for High Efficiency Silicon Heterojunction Solar Cells: A Review. Transactions on Electrical and Electronic Materials, 2019, 20, 1-6.	1.9	8
8	Advanced Light scattering through various textured glass surface morphologies in thin film silicon solar cells. , 2018, , .		4
9	Effects of post-metallisation annealing on surface–interfacial and electrical properties of HfO ₂ /Ge stacks modified <i>in situ</i> with SiO ₂ interfacial layer. Materials Research Express, 2019, 6, 086442.	1.6	2
10	Influence of Ultra-Thin Ge ₃ N ₄ Passivation Layer on Structural, Interfacial, and Electrical Properties of HfO ₂ /Ge Metal-Oxide–Semiconductor Devices. Journal of Nanoscience and Nanotechnology, 2020, 20, 1039-1045.	0.9	2
11	Influence of molybdenum oxide thickness, electronic structure, and work function on the performance of hole selective silicon heterojunction solar cells., 2019,,.		1