Aditya Pratap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1091309/publications.pdf Version: 2024-02-01

Δριτνλ Ρρλτλο

#	Article	IF	CITATIONS
1	Identification and development of key descriptors for phenotypic characterization of tuber cowpea [Vigna vexillata (L.) A. Rich.]. Genetic Resources and Crop Evolution, 2022, 69, 1375-1389.	1.6	3
2	Insights into the genetic diversity of an underutilized Indian legume, Vigna stipulacea (Lam.) Kuntz., using morphological traits and microsatellite markers. PLoS ONE, 2022, 17, e0262634.	2.5	6
3	Species diversity, phylogeny and evidence of recombination in begomoviruses associated with yellow mosaic disease of moth bean (<i>Vigna aconitifolia</i>) in South India. Journal of Phytopathology, 2022, 170, 300-314.	1.0	3
4	Genomic Designing for Abiotic Stress Tolerance in Mungbean and Urdbean. , 2022, , 271-343.		1
5	Genome-Wide Analysis of Late Embryogenesis Abundant Protein Gene Family in Vigna Species and Expression of VrLEA Encoding Genes in Vigna glabrescens Reveal Its Role in Heat Tolerance. Frontiers in Plant Science, 2022, 13, 843107.	3.6	9
6	Editorial: Accelerating Genetic Gains in Pulses. Frontiers in Plant Science, 2022, 13, 879377.	3.6	5
7	Mungbean Breeding. , 2022, , 1097-1149.		2
8	Genetic Enhancement in Mungbean (Vigna radiata) as Revealed by Genome-Wide Mapped Microsatellite Markers. Agricultural Research, 2021, 10, 369-377.	1.7	5
9	Urdbean. , 2021, , 33-54.		5
10	Mungbean. , 2021, , 1-32.		6
11	Assessment of root phenotypes in mungbean mini-core collection (MMC) from the World Vegetable Center (AVRDC) Taiwan. PLoS ONE, 2021, 16, e0247810.	2.5	15
12	Improving Drought Tolerance in Mungbean (Vigna radiata L. Wilczek): Morpho-Physiological, Biochemical and Molecular Perspectives. Agronomy, 2021, 11, 1534.	3.0	19
13	Screening of endemic wild Vigna accessions for resistance to three bruchid species. Journal of Stored Products Research, 2021, 93, 101864.	2.6	7
14	Genetic diversity and population genetic structure analysis of an extensive collection of wild and cultivated Vigna accessions. Molecular Genetics and Genomics, 2021, 296, 1337-1353.	2.1	7
15	Microsatellite-based association mapping for agronomic traits in mungbean (Vigna radiata L. Wilczek). Journal of Genetics, 2021, 100, 1.	0.7	6
16	Association Mapping for Yield Attributing Traits and Yellow Mosaic Disease Resistance in Mung Bean [Vigna radiata (L.) Wilczek]. Frontiers in Plant Science, 2021, 12, 749439.	3.6	5
17	Understanding G × E Interaction for Nutritional and Antinutritional Factors in a Diverse Panel of Vigna stipulacea (Lam.) Kuntz Germplasm Tested Over the Locations. Frontiers in Plant Science, 2021, 12, 766645.	3.6	7
18	Halopriming Imparts Salt Tolerance by Reducing Oxidative, Osmotic Stress and DNA Damage in Five Different Legume Varieties. Legume Research, 2021, , .	0.1	3

Aditya Pratap

#	Article	IF	CITATIONS
19	Association mapping for mungbean yellow mosaic India virus resistance in mungbean (Vigna radiata L.) Tj ETQq1 🕻	l 0.78431 2.2	4 ₁ rgBT /Ove
20	Delineating GenotypeÂ×ÂEnvironment interactions towards durable resistance in mungbean against Cercospora leaf spot (<i>Cercospora canescens</i>) using GGE biplot. Plant Breeding, 2020, 139, 639-650.	1.9	17
21	Delineation of Genotype-by-Environment interactions for identification and validation of resistant genotypes in mungbean to root-knot nematode (Meloidogyne incognita) using GGE biplot. Scientific Reports, 2020, 10, 4108.	3.3	20
22	Current Perspectives on Introgression Breeding in Food Legumes. Frontiers in Plant Science, 2020, 11, 589189.	3.6	52
23	Breeding Progress and Future Challenges: Biotic Stresses. Compendium of Plant Genomes, 2020, , 55-80.	0.5	24
24	Breeding Progress and Future Challenges: Abiotic Stresses. Compendium of Plant Genomes, 2020, , 81-96.	0.5	15
25	Molecular and Conventional Breeding Strategies for Improving Biotic Stress Resistance in Common Bean. , 2020, , 389-421.		7
26	Mungbean And High-Temperature Stress: Responses And Strategies To Improve Heat Tolerance. , 2020, , 144-170.		1
27	Biotic and Abiotic Constraints in Mungbean Production—Progress in Genetic Improvement. Frontiers in Plant Science, 2019, 10, 1340.	3.6	120
28	Breeding for Enhancing Legumovirus Resistance in Mungbean: Current Understanding and Future Directions. Agronomy, 2019, 9, 622.	3.0	16
29	Towards Development of Climate Smart Mungbean: Challenges and Opportunities. , 2019, , 235-264.		18
30	Using Plant Phenomics to Exploit the Gains of Genomics. Agronomy, 2019, 9, 126.	3.0	44
31	Crop Genetic Biodiversity with Special Reference to Oilseed Brassicas and Wild Allies: Conservation and Their Utilization. Sustainability in Plant and Crop Protection, 2019, , 47-62.	0.4	Ο
32	Delineating taxonomic identity of two closely related Vigna species of section Aconitifoliae: V. trilobata (L.) Verdc. and V. stipulacea (Lam.) Kuntz in India. Genetic Resources and Crop Evolution, 2019, 66, 1155-1165.	1.6	22
33	Physiological Traits for Shortening Crop Duration and Improving Productivity of Greengram (Vigna) Tj ETQq1 1 0.7	784314 rg 3.6	BT /Overloc
34	Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breeding, 2018, 137, 235-249.	1.9	36
35	Variation in pre-harvest sprouting tolerance and fresh seed germination in mungbean (<i>Vigna) Tj ETQq1 1 0.784</i>	1314 rgBT 0.8	/Qyerlock 1
36	Genetic and Genomic Approaches for Improvement in Mungbean (Vigna radiata L.). , 2018, , 175-189.		3

ADITYA PRATAP

# /	Article	IF	CITATIONS
 37 1	Field characterization of endemic wild Vigna accessions collected from biodiversity hotspots of India to identify promising genotypes for multiple agronomic and adaptive traits. Indian Journal of Agricultural Research, 2018, , .	0.1	0
38 1	Field characterization of endemic wild Vigna accessions collected from biodiversity hotspots of India to identify promising genotypes for multiple agronomic and adaptive traits. Legume Research, 2018, , .	0.1	0
39 l	Breeding for Insect Resistance in Mung Bean and Urd Bean. , 2017, , 353-385.		3
40	Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Molecular Genetics and Genomics, 2017, 292, 1237-1245.	2.1	61
41	Improving food legumes of semi-arid tropics for the benefit of smallholder farmers: Status and way forward. Current Advances in Agricultural Sciences(an International Journal), 2017, 9, 190.	0.0	0
42	Soybean. , 2016, , 293-315.		17
43 	Crossâ€genera amplification of informative microsatellite markers from common bean and scarlet runner bean for assessment of genetic diversity in mungbean (<i>Vigna radiata</i>). Plant Breeding, 2016, 135, 499-505.	1.9	16
44	Food Legumes for Nutritional Security and Health Benefits. , 2016, , 41-50.		15
45 l	Pre- and Post-harvest Management of Physical and Nutritional Quality of Pulses. , 2016, , 421-431.		2
46	Genetic improvement of mungbean and urdbean and their role in enhancing pulse production in India. Indian Journal of Genetics and Plant Breeding, 2016, 76, 550.	0.5	23
47 l	Phenomics in Crop Plants: Trends, Options and Limitations. , 2015, , .		29
48	Genome scanning of Asiatic Vigna species for discerning population genetic structure based on microsatellite variation. Molecular Breeding, 2015, 35, 1.	2.1	29
49	Plant Phenomics: An Overview. , 2015, , 1-10.		14
50 l	High-Throughput Plant Phenotyping Platforms. , 2015, , 285-296.		7
51 I	Phenotyping Crop Plants for Drought and Heat-Related Traits. , 2015, , 89-100.		3
52	Online database and information system for mungbean germplasm. Legume Research, 2015, , .	0.1	0
53 I	Evaluation of wild species of lentil for agro-morphological traits. Legume Research, 2014, 37, 11.	0.1	11

4

Aditya Pratap

#	Article	IF	CITATIONS
55	Alien Gene Transfer in Crop Plants, Volume 2. , 2014, , .		10
56	Lentil. , 2014, , 191-205.		3
57	Alien Gene Transfer in Crop Plants: An Introduction. , 2014, , 1-23.		2
58	Alien Gene Transfer in Crop Plants, Volume 1. , 2014, , .		2
59	Identification and characterization of sources for photo―and thermoâ€insensitivity in <i>Vigna</i> species. Plant Breeding, 2014, 133, 756-764.	1.9	35
60	Towards Enriching Genomic Resources in Legumes. , 2014, , 221-248.		3
61	Genomics in Studying the Legume Genome Evolution. , 2014, , 287-300.		1
62	Evaluation of Screening Methods for Bruchid Beetle (<i>Callosobruchus chinensis</i>) resistance in Greengram (<i>Vigna radiata</i>) and Blackgram (<i>Vigna mungo</i>) genotypes and influence of seed physical characteristics on its infestation. Vegetos, 2014, 27, 60.	1.5	19
63	Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnology Advances, 2013, 31, 1120-1134.	11.7	289
64	Inheritance and molecular tagging of MYMIV resistance gene in blackgram (Vigna mungo L. Hepper). Euphytica, 2013, 193, 27-37.	1.2	50
65	Characterization of a new begomovirus and a beta satellite associated with the leaf curl disease of French bean in northern India. Virus Genes, 2013, 46, 120-127.	1.6	20
66	Genomic resources for improving food legume crops. Journal of Agricultural Science, 2012, 150, 289-318.	1.3	41
67	Soybean. , 2012, , 293-321.		22
68	Hybrid Technology. , 2012, , 1-21.		1
69	Towards markerâ€assisted selection in pulses: a review. Plant Breeding, 2011, 130, 297-313.	1.9	156
70	History, origin and evolution , 2011, , 1-18.		5
71	First report of natural infection of <i>Mungbean yellow mosaic India virus</i> in two wild species of <i>Vigna</i> . New Disease Reports, 2011, 23, 21-21.	0.8	22
72	Biotechnological Interventions in Host Plant Resistance. , 2009, , 183-206.		2

#	Article	IF	CITATIONS
73	Microsporogenesis and Haploidy Breeding. , 2009, , 293-307.		6
74	Biology and Ecology of Wild Crucifers. , 2009, , 37-67.		13
75	History, Origin, and Evolution. Advances in Botanical Research, 2007, 45, 1-20.	1.1	39
76	Breeding Methods. Advances in Botanical Research, 2007, 45, 21-48.	1.1	7
77	Relative Efficiency of Anther Culture and Chromosome Elimination Techniques for Haploid Induction in Triticale × Wheat and Triticale × Triticale Hybrids. Euphytica, 2006, 150, 339-345.	1.2	31
78	Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breeding, 2005, 124, 96-98.	1.9	57
79	Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale x wheat hybrids through the chromosome elimination technique. Plant Breeding, 2005, 124, 147-153.	1.9	49
80	Resistance status of mungbean (Vigna radiata (L.) Wilczek) advanced breeding materials against mungbean yellow mosaic India virus. Archives of Phytopathology and Plant Protection, 0, , 1-14.	1.3	1