Idan Segev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1091233/publications.pdf

Version: 2024-02-01

38742 39675 10,596 114 50 94 citations h-index g-index papers 137 137 137 7221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex. Cerebral Cortex, 2023, 33, 2857-2878.	2.9	21
2	Statistical Emulation of Neural Simulators: Application to Neocortical L2/3 Large Basket Cells. Frontiers in Big Data, 2022, 5, 789962.	2.9	0
3	Synaptic Input and ACh Modulation Regulate Dendritic Ca ²⁺ Spike Duration in Pyramidal Neurons, Directly Affecting Their Somatic Output. Journal of Neuroscience, 2022, 42, 1184-1195.	3.6	3
4	A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex. Nature Communications, 2022, 13, .	12.8	30
5	Maximally efficient prediction in the early fly visual system may support evasive flight maneuvers. PLoS Computational Biology, 2021, 17, e1008965.	3.2	9
6	The gradient clusteron: A model neuron that learns to solve classification tasks via dendritic nonlinearities, structural plasticity, and gradient descent. PLoS Computational Biology, 2021, 17, e1009015.	3.2	13
7	The Role of Hub Neurons in Modulating Cortical Dynamics. Frontiers in Neural Circuits, 2021, 15, 718270.	2.8	7
8	Single cortical neurons as deep artificial neural networks. Neuron, 2021, 109, 2727-2739.e3.	8.1	104
9	Human neocortical expansion involves glutamatergic neuron diversification. Nature, 2021, 598, 151-158.	27.8	160
10	Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons. PLoS Computational Biology, 2021, 17, e1009558.	3.2	9
11	Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity. PLoS Computational Biology, 2021, 17, e1009754.	3.2	6
12	Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse. Cerebral Cortex, 2020, 30, 730-752.	2.9	49
13	Whole-Neuron Synaptic Mapping Reveals Spatially Precise Excitatory/Inhibitory Balance Limiting Dendritic and Somatic Spiking. Neuron, 2020, 106, 566-578.e8.	8.1	94
14	An efficient analytical reduction of detailed nonlinear neuron models. Nature Communications, 2020, 11, 288.	12.8	22
15	Perceptron Learning and Classification in a Modeled Cortical Pyramidal Cell. Frontiers in Computational Neuroscience, 2020, 14, 33.	2.1	23
16	Using subthreshold events to characterize the functional architecture of the electrically coupled inferior olive network. ELife, 2020, 9 , .	6.0	8
17	Discovering Unexpected Local Nonlinear Interactions in Scientific Black-box Models. , 2019, , .		4
18	Editorial: Dynamics and Modulation of Synaptic Transmission in the Mammalian CNS. Frontiers in Synaptic Neuroscience, 2019, 11, 11.	2.5	2

#	Article	IF	CITATIONS
19	Non-uniform weighting of local motion inputs underlies dendritic computation in the fly visual system. Scientific Reports, 2018, 8, 5787.	3.3	3
20	Wilfrid Rall (1922–2018). Neuron, 2018, 99, 877-879.	8.1	0
21	Human Cortical Pyramidal Neurons: From Spines to Spikes via Models. Frontiers in Cellular Neuroscience, 2018, 12, 181.	3.7	102
22	Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell Reports, 2017, 21, 1550-1561.	6.4	62
23	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
24	Efficient encoding of motion is mediated by gap junctions in the fly visual system. PLoS Computational Biology, 2017, 13, e1005846.	3.2	14
25	Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex. Cerebral Cortex, 2017, 27, 5398-5414.	2.9	85
26	Rich cell-type-specific network topology in neocortical microcircuitry. Nature Neuroscience, 2017, 20, 1004-1013.	14.8	113
27	Comments and General Discussion on "The Anatomical Problem Posed by Brain Complexity and Size: A Potential Solution― Frontiers in Neuroanatomy, 2016, 10, 60.	1.7	13
28	BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience. Frontiers in Neuroinformatics, 2016, 10, 17.	2.5	138
29	From Neuron Biophysics to Orientation Selectivity in Electrically Coupled Networks of Neocortical L2/3 Large Basket Cells. Cerebral Cortex, 2016, 26, 3655-3668.	2.9	27
30	Unique membrane properties and enhanced signal processing in human neocortical neurons. ELife, 2016, 5, .	6.0	154
31	The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in Neural Circuits, 2015, 9, 44.	2.8	138
32	Contribution of Intracolumnar Layer 2/3-to-Layer 2/3 Excitatory Connections in Shaping the Response to Whisker Deflection in Rat Barrel Cortex. Cerebral Cortex, 2015, 25, 849-858.	2.9	23
33	Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex. Cerebral Cortex, 2015, 25, 4839-4853.	2.9	194
34	Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cerebral Cortex, 2015, 25, 3561-3571.	2.9	57
35	Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 2015, 163, 456-492.	28.9	1,258
36	Spatially Distributed Dendritic Resonance Selectively Filters Synaptic Input. PLoS Computational Biology, 2014, 10, e1003775.	3.2	18

#	Article	IF	CITATIONS
37	Dendrites Impact the Encoding Capabilities of the Axon. Journal of Neuroscience, 2014, 34, 8063-8071.	3.6	129
38	Brain and art. Frontiers in Human Neuroscience, 2014, 8, 465.	2.0	5
39	Computational Neuroscience: Capturing the Essence. , 2013, , 671-694.		0
40	A Hierarchical Structure of Cortical Interneuron Electrical Diversity Revealed by Automated Statistical Analysis. Cerebral Cortex, 2013, 23, 2994-3006.	2.9	63
41	Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of Neurophysiology, 2013, 109, 2972-2981.	1.8	64
42	Brain Projects Think Big. Frontiers for Young Minds, 2013, 1, .	0.8	1
43	The role of dendritic inhibition in shaping the plasticity of excitatory synapses. Frontiers in Neural Circuits, 2013, 6, 118.	2.8	47
44	The unimodal distribution of sub–threshold, ongoing activity in cortical networks. Frontiers in Neural Circuits, 2013, 7, 116.	2.8	8
45	The Generation of Phase Differences and Frequency Changes in a Network Model of Inferior Olive Subthreshold Oscillations. PLoS Computational Biology, 2012, 8, e1002580.	3.2	37
46	Principles Governing the Operation of Synaptic Inhibition in Dendrites. Neuron, 2012, 75, 330-341.	8.1	201
47	Losing the battle but winning the war: game theoretic analysis of the competition between motoneurons innervating a skeletal muscle. Frontiers in Computational Neuroscience, 2012, 6, 16.	2.1	3
48	Modeling network phenomena in the Inferior Olive: I. Keeping track of time. BMC Neuroscience, 2011, 12,	1.9	0
49	Modeling network phenomena in the Inferior Olive: II. Modulation of sub-threshold oscillations. BMC Neuroscience, 2011, 12, .	1.9	0
50	Models of Neocortical Layer 5b Pyramidal Cells Capturing aÂWide Range of Dendritic and Perisomatic Active Properties. PLoS Computational Biology, 2011, 7, e1002107.	3.2	313
51	Effective Stimuli for Constructing Reliable Neuron Models. PLoS Computational Biology, 2011, 7, e1002133.	3.2	49
52	Interregional synaptic competition in neurons with multiple STDP-inducing signals. Journal of Neurophysiology, 2011, 105, 989-998.	1.8	23
53	Spike-Timing–Dependent Synaptic Plasticity and Synaptic Democracy in Dendrites. Journal of Neurophysiology, 2009, 101, 3226-3234.	1.8	13
54	Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 2008, 99, 371-379.	1.3	53

#	Article	IF	Citations
55	Two opposing plasticity mechanisms pulling a single synapse. Trends in Neurosciences, 2008, 31, 377-383.	8.6	83
56	A paradoxical isopotentiality: a spatially uniform noise spectrum in neocortical pyramidal cells. Frontiers in Cellular Neuroscience, 2008, 2, 3.	3.7	16
57	Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10229-10233.	7.1	53
58	Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving <i>in vitro</i> and <i>in vivo</i> experimental observations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16353-16358.	7.1	90
59	A Biologically Realistic Model of Contrast Invariant Orientation Tuning by Thalamocortical Synaptic Depression. Journal of Neuroscience, 2007, 27, 10230-10239.	3.6	44
60	A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 2007, 1, 7-18.	2.8	260
61	Optimization principles of dendritic structure. Theoretical Biology and Medical Modelling, 2007, 4, 21.	2.1	124
62	A theoretical view of the neuron as a plastic input-output device., 2007,, 321-349.		1
63	What do dendrites and their synapses tell the neuron?. Journal of Neurophysiology, 2006, 95, 1295-1297.	1.8	28
64	The Interplay Between Homeostatic Synaptic Plasticity and Functional Dendritic Compartments. Journal of Neurophysiology, 2006, 96, 276-283.	1.8	42
65	Spike propagation in dendrites with stochastic ion channels. Journal of Computational Neuroscience, 2006, 20, 77-84.	1.0	27
66	The Endurance and Selectivity of Spatial Patterns of Long-Term Potentiation/Depression in Dendrites under Homeostatic Synaptic Plasticity. Journal of Neuroscience, 2006, 26, 13474-13484.	3.6	28
67	Teaching assistants. Les Houches Summer School Proceedings, 2005, 80, x.	0.2	0
68	Subthreshold voltage noise of rat neocortical pyramidal neurones. Journal of Physiology, 2005, 564, 145-160.	2.9	109
69	Depressed Responses of Facilitatory Synapses. Journal of Neurophysiology, 2005, 94, 865-870.	1.8	12
70	Dynamic and spatial features of the inhibitory pallidal GABAergic synapses. Neuroscience, 2005, 135, 791-802.	2.3	31
71	Conducting synaptic music in dendrites. Nature Neuroscience, 2004, 7, 904-905.	14.8	3
72	Multiple mechanisms govern the dynamics of depression at neocortical synapses of young rats. Journal of Physiology, 2004, 557, 415-438.	2.9	55

#	Article	lF	Citations
73	Synchrony is stubborn in feedforward cortical networks. Nature Neuroscience, 2003, 6, 543-544.	14.8	20
74	On the Transmission of Rate Code in Long Feedforward Networks with Excitatory–Inhibitory Balance. Journal of Neuroscience, 2003, 23, 3006-3015.	3.6	139
75	Coding of Temporal Information by Activity-Dependent Synapses. Journal of Neurophysiology, 2002, 87, 140-148.	1.8	241
76	Playing the Devil's advocate: is the Hodgkin–Huxley model useful?. Trends in Neurosciences, 2002, 25, 558-563.	8.6	67
77	The information efficacy of a synapse. Nature Neuroscience, 2002, 5, 332-340.	14.8	141
78	Chapter 11 Neurones as physical objects: Structure, dynamics and function. Handbook of Biological Physics, 2001, 4, 353-467.	0.8	6
79	Synaptic scaling in vitro and in vivo. Nature Neuroscience, 2001, 4, 853-854.	14.8	55
80	The role of single neurons in information processing. Nature Neuroscience, 2000, 3, 1171-1177.	14.8	428
81	Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of Computational Neuroscience, 2000, 9, 133-148.	1.0	118
82	Untangling Dendrites with Quantitative Models. Science, 2000, 290, 744-750.	12.6	275
83	Signal Transfer in Passive Dendrites with Nonuniform Membrane Conductance. Journal of Neuroscience, 1999, 19, 8219-8233.	3.6	59
84	Dendritic asymmetry cannot account for directional responses of neurons in visual cortex. Nature Neuroscience, 1999, 2, 820-824.	14.8	476
85	Taming time in the olfactory bulb. Nature Neuroscience, 1999, 2, 1041-1043.	14.8	7
86	Axons as computing devices: Basic insights gained from models. Journal of Physiology (Paris), 1999, 93, 263-270.	2.1	49
87	Sound grounds for computing dendrites. Nature, 1998, 393, 207-208.	27.8	45
88	Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends in Neurosciences, 1998, 21, 453-460.	8.6	163
89	Ion Channel Stochasticity May Be Critical in Determining the Reliability and Precision of Spike Timing. Neural Computation, 1998, 10, 1679-1703.	2.2	375
90	Reading Neuronal Synchrony with Depressing Synapses. Neural Computation, 1998, 10, 815-819.	2.2	60

#	Article	IF	Citations
91	Low-Amplitude Oscillations in the Inferior Olive: A Model Based on Electrical Coupling of Neurons With Heterogeneous Channel Densities. Journal of Neurophysiology, 1997, 77, 2736-2752.	1.8	188
92	A Brief History of Time (Constants). Cerebral Cortex, 1996, 6, 93-101.	2.9	178
93	Organization of Octopus Arm Movements: A Model System for Studying the Control of Flexible Arms. Journal of Neuroscience, 1996, 16, 7297-7307.	3.6	137
94	Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11985-11990.	7.1	107
95	Electrical consequences of spine dimensions in a model of a cortical spiny stellate cell completely reconstructed from serial thin sections. Journal of Computational Neuroscience, 1995, 2, 117-130.	1.0	26
96	Physiology, morphology and detailed passive models of guineaâ€pig cerebellar Purkinje cells Journal of Physiology, 1994, 474, 101-118.	2.9	156
97	Signal delay and input synchronization in passive dendritic structures. Journal of Neurophysiology, 1993, 70, 2066-2085.	1.8	125
98	The Impact of Parallel Fiber Background Activity on the Cable Properties of Cerebellar Purkinje Cells. Neural Computation, 1992, 4, 518-533.	2.2	163
99	Single neurone models: oversimple, complex and reduced. Trends in Neurosciences, 1992, 15, 414-421.	8.6	130
100	Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures. Journal of Neurophysiology, 1992, 68, 1401-1420.	1.8	75
101	Propagation of action potentials along complex axonal trees. Model and implementation. Biophysical Journal, 1991, 60, 1411-1423.	0.5	40
102	Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 1991, 60, 1424-1437.	0.5	253
103	Computer simulation of group la EPSPs using morphologically realistic models of cat alpha-motoneurons. Journal of Neurophysiology, 1990, 64, 648-660.	1.8	94
104	Voltage behavior along the irregular dendritic structure of morphologically and physiologically characterized vagal motoneurons in the guinea pig. Journal of Neurophysiology, 1990, 63, 333-346.	1.8	44
105	Computer study of presynaptic inhibition controlling the spread of action potentials into axonal terminals. Journal of Neurophysiology, 1990, 63, 987-998.	1.8	132
106	Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. Journal of Neurophysiology, 1988, 60, 60-85.	1.8	198
107	Computational study of an excitable dendritic spine. Journal of Neurophysiology, 1988, 60, 499-523.	1.8	210
108	Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2192-2195.	7.1	198

#	Article	IF	CITATION
109	Modeling the electrical behavior of anatomically complex neurons using a network analysis program: Passive membrane. Biological Cybernetics, 1985, 53, 27-40.	1.3	95
110	Modeling the electrical behavior of anatomically complex neurons using a network analysis program: Excitable membrane. Biological Cybernetics, 1985, 53, 41-56.	1.3	37
111	Nonlinear cable properties of the giant axon of the cockroach Periplaneta americana Journal of General Physiology, 1985, 85, 729-741.	1.9	3
112	Space-Clamp Problems When Voltage Clamping Branched Neurons With Intracellular Microelectrodes., 1985,, 191-215.		56
113	Synaptic integration mechanisms. Theoretical and experimental investigation of temporal postsynaptic interactions between excitatory and inhibitory inputs. Biophysical Journal, 1983, 41, 41-50.	0.5	53
114	A mathematical model for conduction of action potentials along bifurcating axons Journal of Physiology, 1979, 295, 323-343.	2.9	101