Christopher M Reilly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10911840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiâ€inflammatory Properties of Cerium Oxide Nanoparticles. Small, 2009, 5, 2848-2856.	10.0	610
2	Leaky Gut As a Danger Signal for Autoimmune Diseases. Frontiers in Immunology, 2017, 8, 598.	4.8	411
3	Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. Journal of Clinical Investigation, 2003, 111, 539-552.	8.2	345
4	Bioâ€distribution and <i>in vivo</i> antioxidant effects of cerium oxide nanoparticles in mice. Environmental Toxicology, 2013, 28, 107-118.	4.0	249
5	Control of lupus nephritis by changes of gut microbiota. Microbiome, 2017, 5, 73.	11.1	245
6	Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus. Applied and Environmental Microbiology, 2018, 84, .	3.1	223
7	Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials, 2011, 32, 2918-2929.	11.4	208
8	Nanoceria: A Rare-Earth Nanoparticle as a Novel Anti-Angiogenic Therapeutic Agent in Ovarian Cancer. PLoS ONE, 2013, 8, e54578.	2.5	206
9	Hematopoietic origin of glomerular mesangial cells. Blood, 2003, 101, 2215-2218.	1.4	170
10	Modulation of Renal Disease in MRL/ <i>lpr</i> Mice by Suberoylanilide Hydroxamic Acid. Journal of Immunology, 2004, 173, 4171-4178.	0.8	143
11	Complement Component C3 Is Not Required for Full Expression of Immune Complex Glomerulonephritis in MRL/ <i>lpr</i> Mice. Journal of Immunology, 2001, 166, 6444-6451.	0.8	136
12	The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. Journal of Autoimmunity, 2008, 31, 123-130.	6.5	93
13	Antibiotics ameliorate lupus-like symptoms in mice. Scientific Reports, 2017, 7, 13675.	3.3	93
14	Histone Deacetylase 9 Deficiency Protects against Effector T Cell-mediated Systemic Autoimmunity. Journal of Biological Chemistry, 2011, 286, 28833-28843.	3.4	90
15	Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cellular and Molecular Immunology, 2010, 7, 123-132.	10.5	84
16	Protonated Nanoparticle Surface Governing Ligand Tethering and Cellular Targeting. ACS Nano, 2009, 3, 1203-1211.	14.6	82
17	Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles. PLoS ONE, 2013, 8, e62816.	2.5	80
18	Inhibition of Mesangial Cell Nitric Oxide in MRL/lpr Mice by Prostaglandin J2 and Proliferator Activation Receptor-I ³ Agonists. Journal of Immunology, 2000, 164, 1498-1504.	0.8	70

CHRISTOPHER M REILLY

#	Article	IF	CITATIONS
19	Catalytic Nanoceria Are Preferentially Retained in the Rat Retina and Are Not Cytotoxic after Intravitreal Injection. PLoS ONE, 2013, 8, e58431.	2.5	67
20	Class I and II histone deacetylase inhibition by ITF2357 reduces SLE pathogenesis in vivo. Clinical Immunology, 2014, 151, 29-42.	3.2	63
21	Prostaglandin J2 Inhibition of Mesangial Cell iNOS Expression. Clinical Immunology, 2001, 98, 337-345.	3.2	54
22	Modulation of renal disease in MRL/lpr mice by pharmacologic inhibition of inducible nitric oxide synthase. Kidney International, 2002, 61, 839-846.	5.2	54
23	HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-I®B pathways. Inflammation Research, 2012, 61, 521-533.	4.0	51
24	HDAC Inhibition in Lupus Models. Molecular Medicine, 2011, 17, 417-425.	4.4	49
25	Heat shock protein 90 inhibition by 17-DMAC lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus. Cellular and Molecular Immunology, 2012, 9, 255-266.	10.5	49
26	Use of Genetic Knockouts to Modulate Disease Expression in a Murine Model of Lupus, MRL/lpr Mice. Immunologic Research, 2002, 25, 143-154.	2.9	47
27	Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clinical Immunology, 2016, 162, 58-73.	3.2	44
28	Interferon regulatory factor-1 gene deletion decreases glomerulonephritis in MRL/lpr mice. European Journal of Immunology, 2006, 36, 1296-1308.	2.9	40
29	Cellular and urinary microRNA alterations in NZB/W mice with hydroxychloroquine or prednisone treatment. International Immunopharmacology, 2013, 17, 894-906.	3.8	36
30	MicroRNA-let-7a expression is increased in the mesangial cells of NZB/W mice and increases IL-6 productionin vitro. Autoimmunity, 2013, 46, 351-362.	2.6	31
31	Peroxisome proliferator-activated receptor ? agonists: Potential use for treating chronic inflammatory diseases. Arthritis and Rheumatism, 2002, 46, 598-605.	6.7	30
32	Selective Histone Deacetylase 6 Inhibition Normalizes B Cell Activation and Germinal Center Formation in a Model of Systemic Lupus Erythematosus. Frontiers in Immunology, 2019, 10, 2512.	4.8	30
33	Gut Microbiota and Bacterial DNA Suppress Autoimmunity by Stimulating Regulatory B Cells in a Murine Model of Lupus. Frontiers in Immunology, 2020, 11, 593353.	4.8	30
34	MicroRNAs Implicated in the Immunopathogenesis of Lupus Nephritis. Clinical and Developmental Immunology, 2013, 2013, 1-13.	3.3	28
35	MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFκB activation in vitro. Cellular and Molecular Immunology, 2014, 11, 79-83.	10.5	28
36	HDAC expression and activity is upregulated in diseased lupus-prone mice. International Immunopharmacology, 2015, 29, 494-503.	3.8	27

CHRISTOPHER M REILLY

#	Article	IF	CITATIONS
37	Pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota. Microbiome, 2019, 7, 105.	11.1	23
38	Regulation of neonatal IgA production by the maternal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
39	Cutting Edge: Plasmacytoid Dendritic Cells in Late-Stage Lupus Mice Defective in Producing IFN-α. Journal of Immunology, 2015, 195, 4578-4582.	0.8	18
40	Retinoic Acid Exerts Disease Stage-Dependent Effects on Pristane-Induced Lupus. Frontiers in Immunology, 2020, 11, 408.	4.8	16
41	Non-homologous end joining mediated DNA repair is impaired in the NUP98-HOXD13 mouse model for myelodysplastic syndrome. Leukemia Research, 2013, 37, 112-116.	0.8	13
42	Treatment with a selective histone deacetylase 6 inhibitor decreases lupus nephritis in NZB/W mice. Histology and Histopathology, 2017, 32, 1317-1332.	0.7	11
43	Clinical efficacy of buprenorphine to minimize distress in MRL/lpr mice. European Journal of Pharmacology, 2007, 567, 67-76.	3.5	7
44	Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease. Journal of Inflammation Research, 2010, 3, 127.	3.5	5
45	A NUP98-HOXD13 leukemic fusion gene leads to impaired class switch recombination and antibody production. Experimental Hematology, 2012, 40, 622-633.	0.4	5
46	EGR2 is elevated and positively regulates inflammatory IFNÎ ³ production in lupus CD4+ T cells. BMC Immunology, 2020, 21, 41.	2.2	5
47	Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites, 2022, 12, 40.	2.9	5
48	Phenotypic Drift in Lupus-Prone MRL/lpr Mice: Potential Roles of MicroRNAs and Gut Microbiota. ImmunoHorizons, 2022, 6, 36-46.	1.8	4
49	Isoform-Selective HDAC Inhibition in Autoimmune DiseaseNicole L Regna1* and Christopher M Reilly2. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	2
50	Diet and Microbes in the Pathogenesis of Lupus. , 2017, , .		2
51	AICAR inhibits inflammation in MRL/lpr mouse mesangial cells. FASEB Journal, 2008, 22, 942.12.	0.5	0
52	Empirical Modeling the Effect of Hsp90 Inhibition on Cytokines Associated With Impaired Biotransport of Apoptotic Debris. , 2010, , .		0
53	Analysis of Fecal Microbiota Dynamics in Lupus-Prone Mice using a Simple, Cost-Effective DNA Isolation Method. Journal of Visualized Experiments, 2022, , .	0.3	0