## Xinyu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10910495/publications.pdf Version: 2024-02-01



XINVIL WANC

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microwave-assisted in-situ isomorphism via introduction of Mn into CoCo2O4 for<br>battery-supercapacitor hybrid electrode material. Chemical Engineering Journal, 2022, 430, 132729.                                          | 12.7 | 21        |
| 2  | Direct synthesis of tin spheres/nitrogen-doped porous carbon composite by self-formed template<br>method for enhanced lithium storage. Journal of Materials Science and Technology, 2022, 104, 88-97.                         | 10.7 | 24        |
| 3  | A stable liquid–solid interface of a lithium metal anode enabled by micro-region meshing. Nanoscale, 2022, 14, 1195-1201.                                                                                                     | 5.6  | 4         |
| 4  | High mass loading CaV4O9 microflowers with amorphous phase transformation as cathode for aqueous zinc-ion battery. Chemical Engineering Journal, 2022, 434, 134642.                                                           | 12.7 | 46        |
| 5  | Facile large-scale preparation of vanadium pentoxide -polypyrrole composite for aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2022, 907, 164434.                                                               | 5.5  | 18        |
| 6  | Mg2+ pre-intercalated hydrated vanadium oxide as high-performance cathode for aqueous zinc-ion batteries. Modern Physics Letters B, 2022, 36, .                                                                               | 1.9  | 3         |
| 7  | Nanocomposites for binder-free Li-S electrodes. , 2022, , 99-119.                                                                                                                                                             |      | 0         |
| 8  | Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Research, 2021, 14, 754-761.                                                                             | 10.4 | 96        |
| 9  | A sustainable strategy for fabricating porous carbon supported Sn submicron spheres by<br>self-generated Na <sub>2</sub> CO <sub>3</sub> as templates for lithium-ion battery anode. Green<br>Chemistry, 2021, 23, 6490-6500. | 9.0  | 14        |
| 10 | Dendrite-free lithium metal anode enabled by ion/electron-conductive N-doped 3D carbon fiber interlayer. Journal of Power Sources, 2021, 489, 229524.                                                                         | 7.8  | 27        |
| 11 | Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries. ACS Applied<br>Materials & Interfaces, 2021, 13, 16869-16875.                                                                           | 8.0  | 129       |
| 12 | Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous<br>Zinc-Ion Batteries. Nanomaterials, 2021, 11, 1054.                                                                                 | 4.1  | 26        |
| 13 | A metal–organic framework derived electrical insulating–conductive double-layer configuration for<br>stable lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 13661-13669.                                     | 10.3 | 20        |
| 14 | Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Applied Surface Science, 2020, 502, 144207.                                                           | 6.1  | 66        |
| 15 | Polypyrrole Wrapped V2O5 Nanowires Composite for Advanced Aqueous Zinc-Ion Batteries. Frontiers in Energy Research, 2020, 8, .                                                                                                | 2.3  | 30        |
| 16 | Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage. Chinese<br>Journal of Chemical Engineering, 2020, 28, 2214-2220.                                                                         | 3.5  | 9         |
| 17 | A strategy associated with conductive binder and 3D current collector for aqueous zinc-ion batteries with high mass loading. Journal of Electroanalytical Chemistry, 2020, 873, 114395.                                       | 3.8  | 13        |
| 18 | 3D Ni/Na metal anode for improved sodium metal batteries. Materials Letters, 2020, 275, 128206.                                                                                                                               | 2.6  | 35        |

XINYU WANG

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries. Materials Letters, 2020, 272, 127813.                                                            | 2.6  | 35        |
| 20 | CoS2 impregnated in mesoporous carbon hollow spheres as polysulfide trapper for highly stable Li-S<br>batteries. Materials Letters, 2019, 254, 312-315.                                                        | 2.6  | 8         |
| 21 | Composite of manganese dioxide impregnated in porous hollow carbon spheres for flexible<br>asymmetric solidâ€state supercapacitors. International Journal of Energy Research, 2019, 43, 9025-9033.             | 4.5  | 12        |
| 22 | Vanadium Pentoxide Nanosheets in-Situ Spaced with Acetylene Black as Cathodes for<br>High-Performance Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 41297-41303.                           | 8.0  | 62        |
| 23 | Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries. Science China Chemistry, 2019, 62, 609-615.                                                       | 8.2  | 51        |
| 24 | Largeâ€Area Reduced Graphene Oxide Composite Films for Flexible Asymmetric Sandwich and Microsized<br>Supercapacitors. Advanced Functional Materials, 2018, 28, 1707247.                                       | 14.9 | 103       |
| 25 | Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nature Communications, 2018, 9, 1656.                                              | 12.8 | 1,162     |
| 26 | Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur<br>Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5594-5602.                                              | 8.0  | 83        |
| 27 | All-solid-state supercapacitors with superior compressive strength and volumetric capacitance.<br>Energy Storage Materials, 2018, 13, 119-126.                                                                 | 18.0 | 21        |
| 28 | An Aqueous Rechargeable Zincâ€Organic Battery with Hybrid Mechanism. Advanced Functional<br>Materials, 2018, 28, 1804975.                                                                                      | 14.9 | 462       |
| 29 | An Allâ€Freezeâ€Casting Strategy to Design Typographical Supercapacitors with Integrated Architectures.<br>Small, 2018, 14, e1800280.                                                                          | 10.0 | 21        |
| 30 | Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur<br>batteries. Energy Storage Materials, 2017, 8, 77-84.                                                          | 18.0 | 175       |
| 31 | Foldable All-Solid-State Supercapacitors Integrated with Photodetectors. Advanced Functional<br>Materials, 2017, 27, 1604639.                                                                                  | 14.9 | 83        |
| 32 | Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector.<br>Nano Energy, 2017, 42, 187-194.                                                                       | 16.0 | 85        |
| 33 | A Consecutive Spray Printing Strategy to Construct and Integrate Diverse Supercapacitors on Various<br>Substrates. ACS Applied Materials & Interfaces, 2017, 9, 28612-28619.                                   | 8.0  | 41        |
| 34 | A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for<br>Highâ€Performance Lithium–Sulfur Batteries with Unconventional Configurations. Advanced<br>Materials, 2016, 28, 9629-9636. | 21.0 | 308       |
| 35 | Synthesis of magnetic thermosensitive microcontainers for enzyme immobilization. Journal of Nanoparticle Research, 2015, 17, 1.                                                                                | 1.9  | 9         |
| 36 | Mandelic acid chiral separation utilizing a two-phase partitioning bioreactor built by polysulfone<br>microspheres and immobilized enzymes. Bioprocess and Biosystems Engineering, 2015, 38, 429-435.          | 3.4  | 4         |

XINYU WANG

| #  | Article                                                                                                                                                                                                                                                                                                 | IF                   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|
| 37 | Facile synthesis of oxidic PEC-modified magnetic polydopamine nanospheres for Candida rugosa lipase<br>immobilization. Applied Microbiology and Biotechnology, 2015, 99, 1249-1259.                                                                                                                     | 3.6                  | 36        |
| 38 | Preparation and Characterization of Magnetic Microspheres with an Epoxy Group Coating and Their<br>Applications for Lipase Immobilization. Journal of Macromolecular Science - Physics, 2014, 53, 1348-1363.                                                                                            | 1.0                  | 6         |
| 39 | Preparation of Superparamagnetic Fe <sub>3</sub> O <sub>4</sub> @Alginate/Chitosan Nanospheres for<br><i>Candida rugosa lipase</i> Immobilization and Utilization of Layer-by-Layer Assembly to Enhance the<br>Stability of Immobilized Lipase. ACS Applied Materials & Interfaces, 2012, 4, 5169-5178. | 8.0                  | 110       |
| 40 | Freestanding <scp> V <sub>5</sub> O <sub>12</sub> ·Â6H <sub>2</sub> O NTs </scp> composite films a<br>cathode for foldable aqueous zincâ€ion batteries. International Journal of Energy Research, 0, , .                                                                                                | <sup>IS</sup><br>4.5 | 3         |
| 41 | Environment-friendly synthesis of tin encapsulated within cotton-like carbon as anode materials for<br>lithium-ion batteries. Modern Physics Letters B, O, , .                                                                                                                                          | 1.9                  | 0         |
|    |                                                                                                                                                                                                                                                                                                         |                      |           |