List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10909580/publications.pdf Version: 2024-02-01

Δημίτα Ραι

#	Article	IF	CITATIONS
1	Exposure to Low UV-B Dose Induces DNA Double-Strand Breaks Mediated Onset of Endoreduplication in <i>Vigna radiata</i> (L.) R. Wilczek Seedlings. Plant and Cell Physiology, 2022, 63, 463-483.	3.1	3
2	Cellulose and lignin profiling in seven, economically important bamboo species of India by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass and Bioenergy, 2022, 158, 106362.	5.7	42
3	Genomic Designing Towards Biotic Stress Resistance in Mungbean and Urdbean. , 2022, , 381-414.		5
4	Transcriptome-based identification of small RNA in plants: The need for robust prediction algorithms. , 2020, , 65-97.		0
5	Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Scientific Reports, 2019, 9, 8858.	3.3	25
6	Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genomics, 2018, 19, 190.	2.8	32
7	Screening and Identification of putative long non coding RNAs from transcriptome data of a high yielding blackgram (Vigna mungo), Cv. T9. Data in Brief, 2018, 17, 459-462.	1.0	3
8	From chromosomes to genomics: the evolving trends. Nucleus (India), 2018, 61, 173-174.	2.2	0
9	Functions of long non-coding RNAs in plants: a riddle to explore. Nucleus (India), 2018, 61, 261-272.	2.2	5
10	High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Plant Science, 2017, 257, 96-105.	3.6	46
11	Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure. Genetica, 2017, 145, 319-333.	1.1	6
12	Molecular and biochemical characterization of a Vigna mungo MAP kinase associated with Mungbean Yellow Mosaic India Virus infection and deciphering its role in restricting the virus multiplication. Plant Science, 2017, 262, 127-140.	3.6	11
13	Molecular modeling and simulation of three important components of Plant Pathogen Interaction cascade in Vigna mungo. Bioinformation, 2017, 13, 323-326.	0.5	1
14	Bamboo Flowering from the Perspective of Comparative Genomics and Transcriptomics. Frontiers in Plant Science, 2016, 7, 1900.	3.6	39
15	Analyses of MYMIV-induced transcriptome in Vigna mungo as revealed by next generation sequencing. Genomics Data, 2016, 7, 226-228.	1.3	10
16	An Integrated Approach to Comprehend MYMIV-Susceptibility of Blackgram Cv. T9 Possessing Allele of <i>CYR1</i> , the Cognate R-Gene. American Journal of Plant Sciences, 2016, 07, 267-278.	0.8	3
17	Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1, a CC-NB-LRR type candidate disease resistance gene in Vigna mungo. Plant Cell, Tissue and Organ Culture, 2015, 120, 489-505.	2.3	5
18	Transcript Dynamics at Early Stages of Molecular Interactions of MYMIV with Resistant and Susceptible Genotypes of the Leguminous Host, Vigna mungo. PLoS ONE, 2015, 10, e0124687.	2.5	32

#	Article	IF	CITATIONS
19	Identification and expression profiling of <i>Vigna mungo</i> microRNAs from leaf small RNA transcriptome by deep sequencing. Journal of Integrative Plant Biology, 2014, 56, 15-23.	8.5	32
20	Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Science, 2013, 11, 15.	1.7	58
21	Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Reports, 2013, 32, 1647-1658.	5.6	73
22	Proteomic analysis of cotyledonary explants during shoot organogenesis in Vigna radiata. Plant Cell, Tissue and Organ Culture, 2013, 115, 55-68.	2.3	15
23	Functional characterization of a serine-threonine protein kinase from Bambusa balcooa that implicates in cellulose overproduction and superior quality fiber formation. BMC Plant Biology, 2013, 13, 128.	3.6	14
24	An Efficient In-gel Digestion Protocol for Mass Spectral Analysis by MALDI-TOF-MS and MS/MS and Its Use for Proteomic Analysis of Vigna mungo Leaves. Plant Molecular Biology Reporter, 2013, 31, 47-54.	1.8	6
25	Quassinoids: Chemistry and Novel Detection Techniques. , 2013, , 3345-3366.		5
26	Identification and characterization of elite inbred lines with MYMIV-resistance in Vigna mungo. Field Crops Research, 2012, 135, 116-125.	5.1	16
27	Identification of differential proteins of mungbean cotyledons during seed germination: a proteomic approach. Acta Physiologiae Plantarum, 2012, 34, 2379-2391.	2.1	16
28	lsolation, Characterization, and Structure Analysis of a Non-TIR-NBS-LRR Encoding Candidate Gene from MYMIV-Resistant Vigna mungo. Molecular Biotechnology, 2012, 52, 217-233.	2.4	66
29	Identification of genes involved in bamboo fiber development. Gene, 2011, 478, 19-27.	2.2	19
30	ldentification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell, Tissue and Organ Culture, 2011, 105, 233-242.	2.3	75
31	Developmentally regulated temporal expression and differential acid invertase activity in differentiating cotyledonary explants of mungbean [Vigna radiata (L.) Wilczek]. Plant Cell, Tissue and Organ Culture, 2011, 107, 417-425.	2.3	7
32	Chromosome number and modal karyotype in a polysomatic endangered orchid, Bulbophyllum auricomum Lindl., the Royal Flower of Myanmar. Plant Systematics and Evolution, 2011, 294, 167-175.	0.9	9
33	Molecular Marker-Assisted Genotyping of Mungbean Yellow Mosaic India Virus Resistant Germplasms of Mungbean and Urdbean. Molecular Biotechnology, 2011, 47, 95-104.	2.4	60
34	Genomic variations among in vitro regenerated Bulbophyllum auricomum Lindl. plants. Nucleus (India), 2011, 54, 9-17.	2.2	3
35	Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. Journal of Proteomics, 2011, 74, 337-349.	2.4	82
36	Screening of superior fiber-quality-traits among wild accessions of Bambusa balcooa: efficient and non-invasive evaluation of fiber developmental stages. Annals of Forest Science, 2010, 67, 611-611.	2.0	11

#	Article	IF	CITATIONS
37	Plasmodium falciparum: In vitro interaction of quassin and neo-quassin with artesunate, a hemisuccinate derivative of artemisinin. Experimental Parasitology, 2010, 124, 421-427.	1.2	12
38	Morphological and molecular characterization of Thamnocalamus spathiflorus subsp. spathiflorus at population level. Plant Systematics and Evolution, 2009, 282, 13-20.	0.9	21
39	Regeneration and characterization of Swertia chirata BuchHam. ex Wall. plants from immature seed cultures. Scientia Horticulturae, 2009, 120, 107-114.	3.6	18
40	Conservation of Swertia chirata through direct shoot multiplication from leaf explants. Plant Biotechnology Reports, 2008, 2, 213-218.	1.5	30
41	Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential. , 2008, , 255-270.		5
42	Bamboo Taxonomy and Diversity in the Era of Molecular Markers. Advances in Botanical Research, 2008, 47, 225-268.	1.1	63
43	Quassin alters the immunological patterns of murine macrophages through generation of nitric oxide to exert antileishmanial activity. Journal of Antimicrobial Chemotherapy, 2008, 63, 317-324.	3.0	51
44	Three-dimensional Models of NB-ARC Domains of Disease Resistance Proteins in Tomato, Arabidopsis, and Flax. Journal of Biomolecular Structure and Dynamics, 2008, 25, 357-371.	3.5	13
45	In Vitro Regeneration of Stevia rebaudiana (Bert) from the Nodal Explant. Journal of Plant Biochemistry and Biotechnology, 2007, 16, 59-62.	1.7	28
46	New motifs within the NB-ARC domain of R proteins: Probable mechanisms of integration of geminiviral signatures within the host species of Fabaceae family and implications in conferring disease resistance. Journal of Theoretical Biology, 2007, 246, 564-573.	1.7	16
47	Production of genetically uniform plants from nodal explants of Swertia chirata BuchHam. ex Wall.—an endangered medicinal herb. In Vitro Cellular and Developmental Biology - Plant, 2007, 43, 467-472.	2.1	50
48	Differential Protein Pattern of Two Cotyledon Explants of Vigna radiata During Induced In Vitro Differentiation: Probable Implication in the Conundrum of Differential Regeneration Response. Journal of Plant Biochemistry and Biotechnology, 2006, 15, 123-129.	1.7	8
49	Morphological and Molecular Characterization of Bambusa tulda with a Note on Flowering. Annals of Botany, 2006, 98, 529-535.	2.9	37
50	Clonal Propagation and Production of Genetically Uniform Regenerants from Axillary Meristems of Adult Bamboo. Journal of Plant Biochemistry and Biotechnology, 2005, 14, 185-188.	1.7	31
51	In vitro regeneration of Bambusa balcooa Roxb.: Factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell, Tissue and Organ Culture, 2005, 81, 109-112.	2.3	52
52	Generation and Characterization of SCARs by Cloning and Sequencing of RAPD Products: A Strategy for Species-specific Marker Development in Bamboo. Annals of Botany, 2005, 95, 835-841.	2.9	72
53	Flow cytometric analysis of variation in the level of nuclear DNA endoreduplication in the cotyledons amongst <i>Vigna radiata</i> cultivars. Caryologia, 2004, 57, 262-266.	0.3	4
54	Differential Regeneration Response in Two Cotyledon Types of Vigna radiata: Histomorphological Analysis and Effect of α-arabinogalactan. Journal of Plant Biochemistry and Biotechnology, 2004, 13, 101-106.	1.7	10

#	Article	IF	CITATIONS
55	Differential DNA Endoreduplication and Protein Profile during Cotyledon Ontogeny of Vigna radiata. Journal of Plant Biochemistry and Biotechnology, 2003, 12, 11-18.	1.7	6
56	Differential response of the two cotyledons of Vigna radiata in vitro. Plant Cell Reports, 1995, 15, 248-253.	5.6	32
57	Callus Cultures from Zygotic Embryos of Costus speciosus and Their Morphogenetic Responses. Journal of Plant Biochemistry and Biotechnology, 1995, 4, 29-32.	1.7	3
58	Propagation of Costus speciosus (Koen.) Sm. through in vitro rhizome production. Plant Cell Reports, 1991, 10, 525-8.	5.6	5