Walid Kuri-Harcuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090640/publications.pdf

Version: 2024-02-01

20 papers 659 citations

567281 15 h-index 752698 20 g-index

20 all docs

20 docs citations

times ranked

20

884 citing authors

#	Article	IF	CITATIONS
1	A cellular perspective of adipogenesis transcriptional regulation. Journal of Cellular Physiology, 2019, 234, 1111-1129.	4.1	39
2	Lipogenic Enzymes Complexes and Cytoplasmic Lipid Droplet Formation During Adipogenesis. Journal of Cellular Biochemistry, 2016, 117, 2315-2326.	2.6	10
3	Retinoic Acid Inhibits Adipogenesis Modulating C/EBPβ Phosphorylation and Down Regulating <i>Srebf1a</i> Expression. Journal of Cellular Biochemistry, 2016, 117, 629-637.	2.6	5
4	Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Scientific Reports, 2016, 6, 24389.	3.3	54
5	Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of adipokines in adipocytes. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2485-2496.	2.4	30
6	The transient expression of <i> Klf4 < /i > and <i> Klf5 < /i > during adipogenesis depends on GSK3\hat{I}^2 activity. Adipocyte, 2015, 4, 248-255.</i></i>	2.8	16
7	Glucocorticoid Paradoxically Recruits Adipose Progenitors and Impairs Lipid Homeostasis and Glucose Transport in Mature Adipocytes. Scientific Reports, 2013, 3, 2573.	3.3	30
8	Decorin gene expression and its regulation in human keratinocytes. Biochemical and Biophysical Research Communications, 2011, 411, 168-174.	2.1	9
9	Srebf1a is a key regulator of transcriptional control for adipogenesis. Scientific Reports, 2011, 1, 178.	3.3	59
10	Staurosporine rapidly commits 3T3â€F442A cells to the formation of adipocytes by activation of GSKâ€3β and mobilization of calcium. Journal of Cellular Biochemistry, 2008, 105, 147-157.	2.6	19
11	Fibromodulin gene is expressed in human epidermal keratinocytes in culture and in human epidermis in vivo. Biochemical and Biophysical Research Communications, 2008, 371, 420-424.	2.1	17
12	Adipogenic genes on induction and stabilization of commitment to adipose conversion. Biochemical and Biophysical Research Communications, 2008, 374, 720-724.	2.1	13
13	Commitment of 3T3-F442A cells to adipocyte differentiation takes place during the first 24–36 h after adipogenic stimulation: TNF-α inhibits commitment. Experimental Cell Research, 2003, 284, 161-170.	2.6	26
14	Cultivation, Serial Transfer, and Differentiation of Epidermal Keratinocytes in Serum-Free Medium. Biochemical and Biophysical Research Communications, 1997, 236, 167-172.	2.1	19
15	Culture of proliferating and differentiating fat-storing cells in 3T3-conditioned medium. Biology of the Cell, 1988, 64, 29-38.	2.0	8
16	Thyroid hormone stimulates adipocyte differentiation of 3T3 cells. Molecular and Cellular Biochemistry, 1987, 76, 35-43.	3.1	47
17	Commitment of adipocyte differentiation in 3T3 cells is inhibited by retinoic acid, and the expression of lipogenic enzymes is modulated through cytoskeleton stabilization. Differentiation, 1987, 36, 211-219.	1.9	41
18	Extracellular matrix production by mouse 3T3-F442A cells during adipose differentiation in culture. Differentiation, 1984, 28, 173-178.	1.9	51

#	Article	lF	CITATIONS
19	DNA synthesis and cell division related to adipose differentiation of 3T3 cells. Journal of Cellular Physiology, 1983, 114, 39-44.	4.1	48
20	Differentiation of 3T3-F442A Cells into Adipocytes is Inhibited by Retinoic Acid. Differentiation, 1982, 23, 164-169.	1.9	118