Monica Fernandez Monreal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090489/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gammaâ€protocadherin localization at the synapse is associated with parameters of synaptic maturation. Journal of Comparative Neurology, 2021, 529, 2407-2417.	1.6	11
2	Superâ€resolution shadow imaging reveals local remodeling of astrocytic microstructures and brain extracellular space after osmotic challenge. Glia, 2021, 69, 1605-1613.	4.9	33
3	Cover Image, Volume 69, Issue 6. Glia, 2021, 69, C1.	4.9	0
4	A retention-release mechanism based on Rab11-FIP2 for AMPA receptor synaptic delivery during long-term potentiation. Journal of Cell Science, 2019, 132, .	2.0	7
5	Lattice light sheet microscopy and photo-stimulation in brain slices. , 2019, , .		10
6	APPL1 gates long-term potentiation via its plekstrin homology domain. Journal of Cell Science, 2016, 129, 2793-803.	2.0	13
7	The Balance between Receptor Recycling and Trafficking toward Lysosomes Determines Synaptic Strength during Long-Term Depression. Journal of Neuroscience, 2012, 32, 13200-13205.	3.6	108
8	Characterization of MSB Synapses in Dissociated Hippocampal Culture with Simultaneous Pre- and Postsynaptic Live Microscopy. PLoS ONE, 2011, 6, e26478.	2.5	8
9	PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nature Neuroscience, 2010, 13, 36-44.	14.8	135
10	Gammaâ€protocadherins are enriched and transported in specialized vesicles associated with the secretory pathway in neurons. European Journal of Neuroscience, 2010, 32, 921-931.	2.6	21
11	LC3-dependent Intracellular Membrane Tubules Induced by Î ³ -Protocadherins A3 and B2. Journal of Biological Chemistry, 2010, 285, 20982-20992.	3.4	32
12	Tissue Plasminogen Activator Alters Intracellular Sequestration of Zinc through Interaction with the Transporter ZIP4. Journal of Neuroscience, 2010, 30, 6538-6547.	3.6	27
13	Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons. Molecular and Cellular Neurosciences, 2009, 40, 344-353.	2.2	69
14	Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. Journal of Cell Science, 2007, 120, 578-585.	2.0	66
15	Tissue-Type Plasminogen Activator Crosses the Intact Blood-Brain Barrier by Low-Density Lipoprotein Receptor–Related Protein-Mediated Transcytosis. Circulation, 2005, 111, 2241-2249.	1.6	166
16	Oxygen Glucose Deprivation Switches the Transport of tPA Across the Blood–Brain Barrier From an LRP-Dependent to an Increased LRP-Independent Process. Stroke, 2005, 36, 1059-1064.	2.0	110
17	The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Molecular and Cellular Neurosciences, 2005, 30, 552-558.	2.2	71
18	Physiological and pathological implications of the tPA/NR1 interaction: An immunization-based investigation. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S579-S579.	4.3	0

#	Article	IF	CITATIONS
19	Neuroprotective activity of neuroserpin against NMDA receptor-mediated excitotoxicity. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S455-S455.	4.3	0
20	Arginine 260 of the Amino-terminal Domain of NR1 Subunit Is Critical for Tissue-type Plasminogen Activator-mediated Enhancement of N-Methyl-D-aspartate Receptor Signaling. Journal of Biological Chemistry, 2004, 279, 50850-50856.	3.4	116
21	2,7-Bis-(4-Amidinobenzylidene)-Cycloheptan-1-One Dihydrochloride, tPA Stop, Prevents tPA-Enhanced Excitotoxicity Both In Vitro and In Vivo. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1153-1159.	4.3	20
22	Equivocal roles of tissue-type plasminogen activator in stroke-induced injury. Trends in Neurosciences, 2004, 27, 155-160.	8.6	97
23	ls tissue-type plasminogen activator a neuromodulator?. Molecular and Cellular Neurosciences, 2004, 25, 594-601.	2.2	65
24	Transforming growth factor αâ€induced expression of typeâ€1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEB Journal, 2003, 17, 277-279.	0.5	48
25	Smad3-Dependent Induction of Plasminogen Activator Inhibitor-1 in Astrocytes Mediates Neuroprotective Activity of Transforming Growth Factor-β1 against NMDA-Induced Necrosis. Molecular and Cellular Neurosciences, 2002, 21, 634-644.	2.2	77
26	Matching Gene Expression with Hypometabolism after Cerebral Ischemia in the Nonhuman Primate. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1165-1169.	4.3	7