Jean-Luc E Bredas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090488/publications.pdf

Version: 2024-02-01

863 1527 59,022 578 117 218 citations h-index g-index papers 599 599 599 36840 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Charge Transport in Organic Semiconductors. Chemical Reviews, 2007, 107, 926-952.	23.0	3,853
2	Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chemical Reviews, 2004, 104, 4971-5004.	23.0	2,539
3	A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science, 2012, 336, 327-332.	6.0	1,878
4	Molecular Understanding of Organic Solar Cells: The Challenges. Accounts of Chemical Research, 2009, 42, 1691-1699.	7.6	1,291
5	Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chemistry of Materials, 2004, 16, 4436-4451.	3.2	1,256
6	Organic photovoltaics. Energy and Environmental Science, 2009, 2, 251.	15.6	1,142
7	Mind the gap!. Materials Horizons, 2014, 1, 17-19.	6.4	850
8	Structureâ "Property Relationships for Two-Photon Absorbing Chromophores: Â Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. Journal of the American Chemical Society, 2000, 122, 9500-9510.	6.6	842
9	Single-electron transistor of a single organic molecule with access to several redox states. Nature, 2003, 425, 698-701.	13.7	798
10	Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors. Journal of the American Chemical Society, 2006, 128, 9882-9886.	6.6	756
11	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	13.3	701
12	Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States. Journal of the American Chemical Society, 2017, 139, 4042-4051.	6.6	698
13	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	13.3	556
14	Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions:  the Remarkable Role of Polarized Aromatic Groups. Journal of the American Chemical Society, 2003, 125, 15651-15658.	6.6	485
15	Characterization of the Interface Dipole at Organic/ Metal Interfaces. Journal of the American Chemical Society, 2002, 124, 8131-8141.	6.6	471
16	Charge Transport Properties in Discotic Liquid Crystals:  A Quantum-Chemical Insight into Structureâ^'Property Relationships. Journal of the American Chemical Society, 2004, 126, 3271-3279.	6.6	464
17	Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	5.8	458
18	The Vibrational Reorganization Energy in Pentacene:  Molecular Influences on Charge Transport. Journal of the American Chemical Society, 2002, 124, 7918-7919.	6.6	425

#	Article	IF	Citations
19	High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nature Photonics, 2018, 12, 98-104.	15.6	421
20	Transport Properties in the Rubrene Crystal: Electronic Coupling and Vibrational Reorganization Energy. Advanced Materials, 2005, 17, 1072-1076.	11.1	409
21	Organic Thin Film Transistors Based onN-Alkyl Perylene Diimides:Â Charge Transport Kinetics as a Function of Gate Voltage and Temperature. Journal of Physical Chemistry B, 2004, 108, 19281-19292.	1.2	406
22	Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. Accounts of Chemical Research, 2018, 51, 2215-2224.	7.6	382
23	The Interface Energetics of Self-Assembled Monolayers on Metals. Accounts of Chemical Research, 2008, 41, 721-729.	7.6	371
24	Reliable Prediction with Tuned Range-Separated Functionals of the Singlet–Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence. Journal of Chemical Theory and Computation, 2015, 11, 3851-3858.	2.3	362
25	High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nature Materials, 2017, 16, 356-362.	13.3	345
26	The exciton binding energy in luminescent conjugated polymers. Advanced Materials, 1996, 8, 447-452.	11.1	344
27	Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nature Photonics, 2020, 14, 636-642.	15.6	331
28	Organic Electronic Materials: Recent Advances in the DFT Description of the Ground and Excited States Using Tuned Range-Separated Hybrid Functionals. Accounts of Chemical Research, 2014, 47, 3284-3291.	7.6	324
29	Design of Polymethine Dyes with Large Third-Order Optical Nonlinearities and Loss Figures of Merit. Science, 2010, 327, 1485-1488.	6.0	320
30	Tuning the Charge-Transport Parameters of Perylene Diimide Single Crystals via End and/or Core Functionalization: A Density Functional Theory Investigation. Journal of the American Chemical Society, 2010, 132, 3375-3387.	6.6	320
31	Photoinduced Charge Generation and Recombination Dynamics in Model Donor/Acceptor Pairs for Organic Solar Cell Applications:  A Full Quantum-Chemical Treatment. Journal of the American Chemical Society, 2005, 127, 6077-6086.	6.6	314
32	Polarization Energies in Oligoacene Semiconductor Crystals. Journal of the American Chemical Society, 2008, 130, 12377-12384.	6.6	313
33	Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor-Substituted Polyenes on the Ground-State Polarization and Bond Length Alternation. Journal of the American Chemical Society, 1994, 116, 2619-2620.	6.6	298
34	The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/Fullerene Heterojunction. Advanced Functional Materials, 2012, 22, 2987-2995.	7.8	298
35	Excited-State Electronic Structure of Conjugated Oligomers and Polymers:  A Quantum-Chemical Approach to Optical Phenomena. Accounts of Chemical Research, 1999, 32, 267-276.	7.6	286
36	Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C ₆₀ Solar Cells: Theoretical Insight into the Impact of Interface Geometry. Journal of the American Chemical Society, 2009, 131, 15777-15783.	6.6	275

#	Article	IF	Citations
37	Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nature Materials, 2019, 18, 1084-1090.	13.3	271
38	Intersystem Crossing Processes in Nonplanar Aromatic Heterocyclic Molecules. Journal of Physical Chemistry A, 2007, 111, 10490-10499.	1.1	261
39	Interface Energetics and Level Alignment at Covalent Metal-Molecule Junctions: π-Conjugated Thiols on Gold. Physical Review Letters, 2006, 96, 196806.	2.9	258
40	Exciton Migration in Rigid-Rod Conjugated Polymers: An Improved Förster Model. Journal of the American Chemical Society, 2005, 127, 4744-4762.	6.6	257
41	Toward Control of the Metalâ^'Organic Interfacial Electronic Structure in Molecular Electronics:Â A First-Principles Study on Self-Assembled Monolayers of π-Conjugated Molecules on Noble Metals. Nano Letters, 2007, 7, 932-940.	4.5	257
42	Prediction of Remarkable Ambipolar Charge-Transport Characteristics in Organic Mixed-Stack Charge-Transfer Crystals. Journal of the American Chemical Society, 2012, 134, 2340-2347.	6.6	245
43	Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nature Materials, 2017, 16, 35-44.	13.3	243
44	Redox States of Long Oligothiophenes: Two Polarons on a Single Chain. Chemistry - A European Journal, 1998, 4, 1509-1522.	1.7	242
45	A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells. Chemical Science, 2011, 2, 1200-1218.	3.7	241
46	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	19.8	235
47	Long-range corrected hybrid functionals for π-conjugated systems: Dependence of the range-separation parameter on conjugation length. Journal of Chemical Physics, 2011, 135, 204107.	1.2	234
48	Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors. Chemistry of Materials, 2011, 23, 5484-5490.	3.2	232
49	Ultralow Doping in Organic Semiconductors: Evidence of Trap Filling. Physical Review Letters, 2012, 109, 176601.	2.9	231
50	Charge-transfer electronic states inÂorganic solar cells. Nature Reviews Materials, 2019, 4, 689-707.	23.3	229
51	One- and Two-Photon Spectroscopy of Donorâ^'Acceptorâ^'Donor Distyrylbenzene Derivatives:  Effect of Cyano Substitution and Distortion from Planarity. Journal of Physical Chemistry A, 2002, 106, 11470-11480.	1.1	227
52	Unconventional, Chemically Stable, and Soluble Two-Dimensional Angular Polycyclic Aromatic Hydrocarbons: From Molecular Design to Device Applications. Accounts of Chemical Research, 2015, 48, 500-509.	7.6	227
53	Transition from Tunneling to Hopping Transport in Long, Conjugated Oligo-imine Wires Connected to Metals. Journal of the American Chemical Society, 2010, 132, 4358-4368.	6.6	217
54	Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes. Chemistry of Materials, 2016, 28, 3-16.	3.2	215

#	Article	IF	CITATIONS
55	A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures. Advanced Materials, 2017, 29, 1702767.	11.1	215
56	A Spray-Processable, Low Bandgap, and Ambipolar Donorâ^'Acceptor Conjugated Polymer. Journal of the American Chemical Society, 2009, 131, 2824-2826.	6.6	214
57	Metal-Ion Sensing Fluorophores with Large Two-Photon Absorption Cross Sections:Â Aza-Crown Ether Substituted Donorâ^'Acceptorâ^'Donor Distyrylbenzenes. Journal of the American Chemical Society, 2004, 126, 9291-9306.	6.6	206
58	Impact of Bidirectional Charge Transfer and Molecular Distortions on the Electronic Structure of a Metal-Organic Interface. Physical Review Letters, 2007, 99, 256801.	2.9	206
59	Extended Squaraine Dyes with Large Two-Photon Absorption Cross-Sections. Journal of the American Chemical Society, 2006, 128, 14444-14445.	6.6	205
60	Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties. Macromolecules, 2012, 45, 6405-6414.	2.2	203
61	Inside Perovskites: Quantum Luminescence from Bulk Cs ₄ PbBr ₆ Single Crystals. Chemistry of Materials, 2017, 29, 7108-7113.	3.2	200
62	Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nature Communications, 2017, 8, 79.	5.8	198
63	Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C, 2017, 5, 2771-2780.	2.7	196
64	Alternating Oligo(p-phenylene vinylene)â^'Perylene Bisimide Copolymers:Â Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donorâ^'Acceptor Materials. Journal of the American Chemical Society, 2003, 125, 8625-8638.	6.6	195
65	Steric Control of the Donor/Acceptor Interface: Implications in Organic Photovoltaic Charge Generation. Journal of the American Chemical Society, 2011, 133, 12106-12114.	6.6	193
66	Green emission from poly(fluorene)s: The role of oxidation. Journal of Chemical Physics, 2002, 117, 6794-6802.	1.2	190
67	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	6.6	190
68	Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chemical Reviews, 2016, 116, 7117-7158.	23.0	189
69	Effects of electronegative substitution on the optical and electronic properties of acenes and diazaacenes. Nature Communications, 2010, 1, 91.	5.8	187
70	Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives. Journal of the American Chemical Society, 2012, 134, 5222-5232.	6.6	187
71	Molecular behavior of zero-dimensional perovskites. Science Advances, 2017, 3, e1701793.	4.7	187
72	High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle. Nature Materials, 2019, 18, 977-984.	13.3	181

#	Article	lF	CITATIONS
73	Impact of Perfluorination on the Charge-Transport Parameters of Oligoacene Crystals. Journal of the American Chemical Society, 2009, 131, 1502-1512.	6.6	174
74	Optical and Redox Properties of a Series of 3,4-Ethylenedioxythiophene Oligomers. Chemistry - A European Journal, 2002, 8, 2384.	1.7	172
75	Direct-Indirect Nature of the Bandgap in Lead-Free Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 3173-3177.	2.1	172
76	Conjugated polymers and oligomers: Designing novel materials using a quantum-chemical approach. Advanced Materials, 1995, 7, 263-274.	11.1	162
77	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nature Materials, 2021, 20, 1142-1148.	13.3	158
78	Electron Affinities of 1,1-Diaryl-2,3,4,5-tetraphenylsiloles:Â Direct Measurements and Comparison with Experimental and Theoretical Estimates. Journal of the American Chemical Society, 2005, 127, 9021-9029.	6.6	155
79	Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. Journal of Materials Chemistry, 2010, 20, 123-134.	6.7	154
80	Charge Transport Parameters of the Pentathienoacene Crystal. Journal of the American Chemical Society, 2007, 129, 13072-13081.	6.6	153
81	Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study. Advanced Materials, 2009, 21, 4496-4501.	11.1	152
82	Multipole expansion in tight-binding Hartree-Fock calculations for infinite model polymers. Physical Review B, 1980, 22, 6254-6267.	1.1	151
83	Two-Photon Absorption at Telecommunications Wavelengths in a Dipolar Chromophore with a Pyrrole Auxiliary Donor and Thiazole Auxiliary Acceptor. Journal of the American Chemical Society, 2005, 127, 7282-7283.	6.6	150
84	Electronic Evolution of Poly(3,4-ethylenedioxythiophene) (PEDOT): From the Isolated Chain to the Pristine and Heavily Doped Crystals. Journal of the American Chemical Society, 2008, 130, 16880-16889.	6.6	150
85	Bistetracene: An Air-Stable, High-Mobility Organic Semiconductor with Extended Conjugation. Journal of the American Chemical Society, 2014, 136, 9248-9251.	6.6	150
86	Evaluating the Performance of DFT Functionals in Assessing the Interaction Energy and Ground-State Charge Transfer of Donor/Acceptor Complexes: Tetrathiafulvaleneâ^Tetracyanoquinodimethane (TTFâ^TCNQ) as a Model Case. Journal of Chemical Theory and Computation, 2011, 7, 602-609.	2.3	143
87	Point Defects and Green Emission in Zero-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 5490-5495.	2.1	143
88	Rubrene-Based Single-Crystal Organic Semiconductors: Synthesis, Electronic Structure, and Charge-Transport Properties. Chemistry of Materials, 2013, 25, 2254-2263.	3.2	141
89	Vibronic Coupling in the Ground and Excited States of Oligoacene Cationsâ€. Journal of Physical Chemistry B, 2006, 110, 18904-18911.	1.2	140
90	Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Letters, 2017, 2, 417-423.	8.8	140

#	Article	IF	CITATIONS
91	Shallow trap states in pentacene thin films from molecular sliding. Applied Physics Letters, 2005, 86, 152115.	1.5	139
92	Correlation between the Microscopic Morphology and the Solid-State Photoluminescence Properties in Fluorene-Based Polymers and Copolymers. Chemistry of Materials, 2004, 16, 994-1001.	3.2	138
93	Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers. Chemistry of Materials, 2008, 20, 5131-5133.	3.2	138
94	Electronic Delocalization in Discotic Liquid Crystals:Â A Joint Experimental and Theoretical Study. Journal of the American Chemical Society, 2004, 126, 11889-11899.	6.6	136
95	Intervalence Transitions in the Mixed-Valence Monocations of Bis(triarylamines) Linked with Vinylene and Phenyleneâ^'Vinylene Bridges. Journal of the American Chemical Society, 2005, 127, 16900-16911.	6.6	135
96	Aromatic Amines:  A Comparison of Electron-Donor Strengths. Journal of Physical Chemistry A, 2005, 109, 9346-9352.	1.1	134
97	Organic Photovoltaics. Accounts of Chemical Research, 2009, 42, 1689-1690.	7.6	134
98	Intrinsic Lead Ion Emissions in Zero-Dimensional Cs ₄ PbBr ₆ Nanocrystals. ACS Energy Letters, 2017, 2, 2805-2811.	8.8	133
99	Fused electron deficient semiconducting polymers for air stable electron transport. Nature Communications, 2018, 9, 416.	5.8	133
100	The metal-on-polymer interface in polymer light emitting diodes. Advanced Materials, 1996, 8, 48-52.	11.1	129
101	Thieno[3,4â€ <i>c</i>)]pyrroleâ€4,6â€dioneâ€3,4â€difluorothiophene Polymer Acceptors for Efficient Allâ€Polymer Bulk Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 12996-13000.	r 7.2	129
102	Organic/metal interfaces in self-assembled monolayers of conjugated thiols: A first-principles benchmark study. Surface Science, 2006, 600, 4548-4562.	0.8	128
103	Interaction of Charge Carriers with Lattice Vibrations in Oligoacene Crystals from Naphthalene to Pentacene. Journal of the American Chemical Society, 2010, 132, 14437-14446.	6.6	128
104	Highly Dipolar, Optically Nonlinear Adducts of Tetracyano-p-quinodimethane:Â Synthesis, Physical Characterization, and Theoretical Aspects. Journal of the American Chemical Society, 1997, 119, 3144-3154.	6.6	126
105	Use of Xâ€Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymerâ€Fullerene Bimolecular Crystal. Advanced Materials, 2012, 24, 6071-6079.	11.1	126
106	Assessing the nature of the charge-transfer electronic states in organic solar cells. Nature Communications, 2018, 9, 5295.	5.8	126
107	Preparation and Characterization of π-Stacking Quinodimethane Oligothiophenes. Predicting Semiconductor Behavior and Bandwidths from Crystal Structures and Molecular Orbital Calculations. Journal of the American Chemical Society, 2004, 126, 15295-15308.	6.6	124
108	Photoelectron Spectroscopic Study of the Electronic Band Structure of Polyfluorene and Fluorene-Arylamine Copolymers at Interfaces. Journal of Physical Chemistry C, 2007, 111, 1378-1384.	1.5	124

#	Article	IF	CITATIONS
109	Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers. Journal of the American Chemical Society, 2012, 134, 8944-8957.	6.6	124
110	Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)-Tuned Range-Separated Density Functional Approach. Journal of Chemical Theory and Computation, 2016, 12, 2906-2916.	2.3	124
111	Design of Organic Chromophores for All-Optical Signal Processing Applications. Chemistry of Materials, 2014, 26, 549-560.	3.2	123
112	Heteroannulated acceptors based on benzothiadiazole. Materials Horizons, 2015, 2, 22-36.	6.4	123
113	Design of Emission Ratiometric Metal-Ion Sensors with Enhanced Two-Photon Cross Section and Brightness. Journal of the American Chemical Society, 2007, 129, 11888-11889.	6.6	122
114	On the Interface Dipole at the Pentaceneâ^'Fullerene Heterojunction: A Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 3215-3224.	1.5	122
115	Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering. Science Advances, 2016, 2, e1501491.	4.7	122
116	Delocalization in Platinumâ^Alkynyl Systems:Â A Metal-Bridged Organic Mixed-Valence Compound. Journal of the American Chemical Society, 2004, 126, 11782-11783.	6.6	121
117	Triplet Excimer Formation in Platinum-Based Phosphors: A Theoretical Study of the Roles of Ptâ^'Pt Bimetallic Interactions and Interligand Ï€â^'Ï€ Interactions. Journal of the American Chemical Society, 2009, 131, 11371-11380.	6.6	121
118	Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. Journal of the American Chemical Society, 2017, 139, 16310-16318.	6.6	121
119	Investigation of Exciton Coupling in Oligothiophenes by Circular Dichroism Spectroscopy. Advanced Materials, 1998, 10, 1343-1348.	11.1	119
120	Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2014, 26, 2299-2306.	3.2	119
121	Halogen Migration in Hybrid Perovskites: The Organic Cation Matters. Journal of Physical Chemistry Letters, 2018, 9, 5474-5480.	2.1	119
122	Near-Infrared Electroluminescence and Low Threshold Amplified Spontaneous Emission above 800 nm from a Thermally Activated Delayed Fluorescent Emitter. Chemistry of Materials, 2018, 30, 6702-6710.	3.2	119
123	Impact of Dielectric Constant on the Singlet–Triplet Gap in Thermally Activated Delayed Fluorescence Materials. Journal of Physical Chemistry Letters, 2017, 8, 2393-2398.	2.1	118
124	Breakdown of the mirror image symmetry in the optical absorption/emission spectra of oligo(para-phenylene)s. Journal of Chemical Physics, 2005, 122, 054501.	1.2	117
125	Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals. Journal of Chemical Physics, 2011, 135, 151103.	1.2	117
126	Design of Efficient Ambipolar Host Materials for Organic Blue Electrophosphorescence: Theoretical Characterization of Hosts Based on Carbazole Derivatives. Journal of the American Chemical Society, 2011, 133, 17895-17900.	6.6	116

#	Article	IF	Citations
127	Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr ₃ Perovskite. ACS Energy Letters, 2019, 4, 789-795.	8.8	116
128	Photophysical Properties of Ruthenium(II) Polyazaaromatic Compounds:Â A Theoretical Insight. Journal of the American Chemical Society, 2004, 126, 683-692.	6.6	114
129	Pyrroline Chromophores for Electro-Optics. Chemistry of Materials, 2006, 18, 2982-2988.	3.2	114
130	Impact of Molecular Packing on Electronic Polarization in Organic Crystals: The Case of Pentacene vs TIPS-Pentacene. Journal of the American Chemical Society, 2014, 136, 6421-6427.	6.6	113
131	Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications, 2022, 13, 2598.	5.8	113
132	A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells. Journal of Materials Chemistry, 2011, 21, 1479.	6.7	112
133	Zinc Oxide as a Model Transparent Conducting Oxide: A Theoretical and Experimental Study of the Impact of Hydroxylation, Vacancies, Interstitials, and Extrinsic Doping on the Electronic Properties of the Polar ZnO (0002) Surface. Chemistry of Materials, 2012, 24, 3044-3055.	3.2	110
134	Modeling Electron and Hole Transport in Fluoroareneâ€Oligothiopene Semiconductors: Investigation of Geometric and Electronic Structure Properties. Advanced Functional Materials, 2008, 18, 332-340.	7.8	109
135	Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications. Chemistry of Materials, 2009, 21, 3618-3628.	3.2	109
136	Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2- <i>b</i>)thiophene) Films. Journal of the American Chemical Society, 2012, 134, 6177-6190.	6.6	108
137	Electronic Coupling in Tetraanisylarylenediamine Mixed-Valence Systems:Â The Interplay between Bridge Energy and Geometric Factors. Journal of the American Chemical Society, 2005, 127, 8508-8516.	6.6	107
138	Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 3051-3065.	3.2	105
139	Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge†ransfer States in Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1601325.	10.2	103
140	Interaction of Charge Carriers with Lattice Vibrations in Organic Molecular Semiconductors: Naphthalene as a Case Study. Journal of Physical Chemistry C, 2009, 113, 4679-4686.	1.5	102
141	Charge Transfer in Molecular Complexes with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F ₄ -TCNQ): A Density Functional Theory Study. Chemistry of Materials, 2011, 23, 5149-5159.	3.2	102
142	Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals. Physical Chemistry Chemical Physics, 2012, 14, 14243.	1.3	101
143	Static and Dynamic Energetic Disorders in the C ₆₀ , PC ₆₁ BM, C ₇₀ , and PC ₇₁ BM Fullerenes. Journal of Physical Chemistry Letters, 2015, 6, 3657-3662.	2.1	101
144	Pyridine-Induced Dimensionality Change in Hybrid Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 4393-4400.	3.2	100

#	Article	IF	CITATIONS
145	Geometric Structure and Torsional Potential of Biisothianaphthene. A Comparative DFT and ab Initio Study. Journal of the American Chemical Society, 1997, 119, 1360-1369.	6.6	99
146	Electronic and vibrational properties of nickel sulfides from first principles. Journal of Chemical Physics, 2007, 127, 214705.	1.2	98
147	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Advanced Energy Materials, 2012, 2, 1208-1217.	10.2	97
148	25th Anniversary Article: Design of Polymethine Dyes for Allâ€Optical Switching Applications: Guidance from Theoretical and Computational Studies. Advanced Materials, 2014, 26, 68-84.	11.1	97
149	Closely Stacked Oligo(phenylene ethynylene)s: Effect of π-Stacking on the Electronic Properties of Conjugated Chromophores. Journal of the American Chemical Society, 2012, 134, 7176-7185.	6.6	96
150	Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals. ACS Nano, 2019, 13, 12621-12629.	7.3	96
151	High Charge-Carrier Mobility in an Amorphous Hexaazatrinaphthylene Derivative. Journal of the American Chemical Society, 2005, 127, 16358-16359.	6.6	95
152	Phosphine Oxide Derivatives as Hosts for Blue Phosphors: A Joint Theoretical and Experimental Study of Their Electronic Structure. Chemistry of Materials, 2010, 22, 247-254.	3.2	95
153	Magnetite Fe ₃ O ₄ (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties. Chemistry of Materials, 2015, 27, 5856-5867.	3.2	93
154	Chain-Length Dependence of Singlet and Triplet Exciton Formation Rates in Organic Light-Emitting Diodes. Advanced Functional Materials, 2004, 14, 684-692.	7.8	92
155	Theoretical characterization of titanyl phthalocyanine as a p-type organic semiconductor: Short intermolecular π-π interactions yield large electronic couplings and hole transport bandwidths. Journal of Chemical Physics, 2008, 128, 034701.	1.2	92
156	Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene-alt-thienothiophene) [PBTTT]. Journal of Physical Chemistry C, 2013, 117, 1633-1640.	1.5	92
157	Intermixing at the Pentaceneâ€Fullerene Bilayer Interface: A Molecular Dynamics Study. Advanced Materials, 2013, 25, 878-882.	11.1	92
158	Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8538-8545.	3.2	92
159	Use of a High Electron-Affinity Molybdenum Dithiolene Complex to p-Dope Hole-Transport Layers. Journal of the American Chemical Society, 2009, 131, 12530-12531.	6.6	91
160	Charge-Transfer Localization in Molecularly Doped Thiophene-Based Donor Polymers. Journal of Physical Chemistry Letters, 2010, 1, 2037-2041.	2.1	91
161	Bis(dioxaborine) compounds with large two-photon cross sections, and their use in the photodeposition of silver. Chemical Communications, 2003, , 1490-1491.	2.2	90
162	Benzothiadiazole-Dithienopyrrole Donor–Acceptor–Donor and Acceptor–Donor–Acceptor Triads: Synthesis and Optical, Electrochemical, and Charge-Transport Properties. Journal of Physical Chemistry C, 2011, 115, 23149-23163.	1.5	90

#	Article	IF	Citations
163	Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18095-18102.	4.0	90
164	Synthesis, Ionisation Potentials and Electron Affinities of Hexaazatrinaphthylene Derivatives. Chemistry - A European Journal, 2007, 13, 3537-3547.	1.7	88
165	Experimental and theoretical study of temperature dependent exciton delocalization and relaxation in anthracene thin films. Journal of Chemical Physics, 2008, 128, 054505.	1.2	88
166	Impact of Electronic Coupling, Symmetry, and Planarization on One- and Two-Photon Properties of Triarylamines with One, Two, or Three Diarylboryl Acceptors. Journal of Physical Chemistry A, 2012, 116, 3781-3793.	1.1	88
167	The Optical, Electronic, and Electroluminescent Properties of Novel Poly(p-phenylene)-Related Polymers. Macromolecules, 1996, 29, 7432-7445.	2.2	87
168	Influence of Structural Dynamics on Polarization Energies in Anthracene Single Crystals. Journal of Physical Chemistry C, 2010, 114, 20678-20685.	1.5	86
169	Tuning the Optoelectronic Properties of Vinylene-Linked Donorâ^'Acceptor Copolymers for Organic Photovoltaics. Macromolecules, 2010, 43, 6685-6698.	2.2	86
170	Polaron Pair versus Bipolaron on Oligothiophene Chains: A Theoretical Study of the Singlet and Triplet States. ChemPhysChem, 2003, 4, 498-505.	1.0	85
171	Electronic Couplings in Organic Mixed-Valence Compounds:Â The Contribution of Photoelectron Spectroscopy. Journal of the American Chemical Society, 2004, 126, 2727-2731.	6.6	85
172	Unipolar Electron Transport Polymers: A Thiazole Based All-Electron Acceptor Approach. Chemistry of Materials, 2016, 28, 6045-6049.	3.2	85
173	Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications. Journal of Materials Chemistry, 2010, 20, 5823.	6.7	84
174	On the relationship between bond-length alternation and many-electron self-interaction error. Journal of Chemical Physics, 2012, 137, 124305.	1.2	84
175	Effect of Solid-State Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces from a Screened Range-Separated Hybrid Functional. Journal of Physical Chemistry Letters, 2017, 8, 3277-3283.	2.1	84
176	A New Class of Mixed-Valence Systems with Orbitally Degenerate Organic Redox Centers. Examples Based on Hexa-Rhenium Molecular Prisms. Journal of the American Chemical Society, 2006, 128, 12592-12593.	6.6	83
177	Effect of Substituents on the Electronic Structure and Degradation Process in Carbazole Derivatives for Blue OLED Host Materials. Chemistry of Materials, 2016, 28, 5791-5798.	3.2	83
178	2,7-Bis(diarylamino)-9,9-dimethylfluorenes as Hole-Transport Materials for Organic Light-Emitting Diodes. Advanced Functional Materials, 2003, 13, 967-973.	7.8	81
179	Synthesis and Two-Photon Spectrum of a Bis(Porphyrin)-Substituted Squaraine. Journal of the American Chemical Society, 2009, 131, 7510-7511.	6.6	81
180	A density functional theory investigation of the electronic structure and spin moments of magnetite. Science and Technology of Advanced Materials, 2014, 15, 044202.	2.8	81

#	Article	IF	CITATIONS
181	Impact of Electron Delocalization on the Nature of the Charge-Transfer States in Model Pentacene/C ₆₀ Interfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 27648-27656.	1.5	80
182	Stabilisation of a heptamethine cyanine dye by rotaxane encapsulation. Chemical Communications, 2008, , 2897.	2.2	79
183	Understanding the Density Functional Dependence of DFT-Calculated Electronic Couplings in Organic Semiconductors. Journal of Physical Chemistry Letters, 2013, 4, 919-924.	2.1	79
184	Electronic Properties of Mixed-Stack Organic Charge-Transfer Crystals. Journal of Physical Chemistry C, 2014, 118, 14150-14156.	1.5	79
185	Molecular Engineering of Nonhalogenated Solution-Processable Bithiazole-Based Electron-Transport Polymeric Semiconductors. Chemistry of Materials, 2015, 27, 2928-2937.	3.2	79
186	Limits for Recombination in a Low Energy Loss Organic Heterojunction. ACS Nano, 2016, 10, 10736-10744.	7.3	79
187	Isolation and Crystal Structures of Two Singlet Bis(Triarylamine) Dications with Nonquinoidal Geometries. Journal of the American Chemical Society, 2006, 128, 1812-1817.	6.6	78
188	To bend or not to bend $\hat{a}\in$ are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity?. Materials Horizons, 2016, 3, 333-339.	6.4	78
189	Impact of Fluorine Substituents on Ï€â€Conjugated Polymer Mainâ€Chain Conformations, Packing, and Electronic Couplings. Advanced Materials, 2016, 28, 8197-8205.	11.1	78
190	The role of vibronic interactions on intramolecular and intermolecular electron transfer in ?-conjugated oligomers. Theoretical Chemistry Accounts, 2003, 110, 59-69.	0.5	77
191	Electrons Are Transported through Phenyleneâ°'Ethynylene Oligomer Monolayers via Localized Molecular Orbitals. Journal of the American Chemical Society, 2004, 126, 2568-2573.	6.6	77
192	Influence of Intermolecular Vibrations on the Electronic Coupling in Organic Semiconductors: The Case of Anthracene and Perfluoropentacene. ChemPhysChem, 2009, 10, 2265-2273.	1.0	77
193	Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: synthesis, structures, optical properties, electrochemistry, and electroluminescence. Journal of Materials Chemistry C, 2013, 1, 1638.	2.7	77
194	Theoretical Study of the Local and Charge-Transfer Excitations in Model Complexes of Pentacene-C ₆₀ Using Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 2014, 10, 2379-2388.	2.3	77
195	Thieno[3,4â€ <i>c</i>]Pyrroleâ€4,6â€Dioneâ€Based Polymer Acceptors for High Openâ€Circuit Voltage Allâ€Polyr Solar Cells. Advanced Energy Materials, 2017, 7, 1602574.	ner 10.2	77
196	Theoretical study of the surface modification of indium tin oxide with trifluorophenyl phosphonic acid molecules: impact of coverage density and binding geometry. Journal of Materials Chemistry, 2010, 20, 2630.	6.7	76
197	Reduction of the Work Function of Gold by N-Heterocyclic Carbenes. Chemistry of Materials, 2017, 29, 3403-3411.	3.2	76
198	Characterization of the Valence and Conduction Band Levels of $\langle i \rangle n \langle i \rangle = 1$ 2D Perovskites: A Combined Experimental and Theoretical Investigation. Advanced Energy Materials, 2018, 8, 1703468.	10.2	76

#	Article	IF	Citations
199	Oddâ^'Even Effects in Self-Assembled Monolayers of ω-(Biphenyl-4-yl)alkanethiols:  A First-Principles Study. Langmuir, 2008, 24, 474-482.	1.6	75
200	Intramolecular Electron-Transfer Rates in Mixed-Valence Triarylamines: Measurement by Variable-Temperature ESR Spectroscopy and Comparison with Optical Data. Journal of the American Chemical Society, 2009, 131, 1717-1723.	6.6	75
201	Polymethine dyes for all-optical switching applications: a quantum-chemical characterization of counter-ion and aggregation effects on the third-order nonlinear optical response. Chemical Science, 2012, 3, 3103.	3.7	75
202	Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores. Journal of Physical Chemistry Letters, 2015, 6, 2158-2162.	2.1	75
203	Modulation of Broadband Emissions in Two-Dimensional ⟠100⟠©-Oriented Ruddlesden†Popper Hybrid Perovskites. ACS Energy Letters, 2020, 5, 2149-2155.	8.8	75
204	Vibronic Coupling in Organic Semiconductors: The Case of Fused Polycyclic Benzene–Thiophene Structures. Chemistry - A European Journal, 2006, 12, 2073-2080.	1.7	74
205	Strain effects on the work function of an organic semiconductor. Nature Communications, 2016, 7, 10270.	5.8	74
206	Local Electronic Structure of Molecular Heterojunctions in a Single‣ayer 2D Covalent Organic Framework. Advanced Materials, 2019, 31, e1805941.	11.1	74
207	Two-Photon Absorption in Quadrupolari̇̃€-Conjugated Molecules: Influence of the Nature of the Conjugated Bridge and the Donor–Acceptor Separation. Chemistry - A European Journal, 2004, 10, 2668-2680.	1.7	72
208	Influence of molecular conformation on organic/metal interface energetics. Chemical Physics Letters, 2005, 413, 390-395.	1.2	72
209	Bis[bisâ€(4â€alkoxyphenyl)amino] Derivatives of Dithienylethene, Bithiophene, Dithienothiophene and Dithienopyrrole: Palladiumâ€Catalysed Synthesis and Highly Delocalised Radical Cations. Chemistry - A European Journal, 2007, 13, 9637-9646.	1.7	72
210	Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. Journal of Materials Chemistry, 2009, 19, 7195.	6.7	72
211	Tuning Delocalization in the Radical Cations of 1,4-Bis[4-(diarylamino)styryl]benzenes, 2,5-Bis[4-(diarylamino)styryl]thiophenes, and 2,5-Bis[4-(diarylamino)styryl]pyrroles through Substituent Effects. Journal of the American Chemical Society, 2012, 134, 10146-10155.	6.6	72
212	Temperature-Mediated Polymorphism in Molecular Crystals: The Impact on Crystal Packing and Charge Transport. Chemistry of Materials, 2015, 27, 112-118.	3.2	72
213	Mode-selective vibrational modulation of charge transport in organic electronic devices. Nature Communications, 2015, 6, 7880.	5.8	72
214	Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 256.	0.9	71
215	Quantum-Chemical Approach to Electronic Coupling:  Application to Charge Separation and Charge Recombination Pathways in a Model Molecular Donorâ^'Acceptor System for Organic Solar Cells. Journal of Physical Chemistry C, 2008, 112, 3429-3433.	1.5	69
216	Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules I. Reference Data at the CCSD(T) Complete Basis Set Limit. Journal of Chemical Theory and Computation, 2016, 12, 595-604.	2.3	69

#	Article	IF	Citations
217	Organic Electronics: Does a Plot of the HOMO–LUMO Wave Functions Provide Useful Information?. Chemistry of Materials, 2017, 29, 477-478.	3.2	69
218	Robust Molecular Dipoleâ€Enabled Defect Passivation and Control of Energyâ€Level Alignment for Highâ€Efficiency Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 17664-17670.	7.2	69
219	Tuning of the Electronic and Optical Properties of Oligothiophenes via Cyano Substitution:Â A Joint Experimental and Theoretical Study. Journal of Physical Chemistry B, 1997, 101, 4553-4558.	1.2	68
220	Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. ACS Nano, 2018, 12, 385-391.	7.3	68
221	Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). Journal of Physical Chemistry Letters, 2019, 10, 3260-3268.	2.1	68
222	Nature of the optical transitions in charged oligothiophenes. Advanced Materials, 1995, 7, 295-297.	11.1	66
223	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. Chemistry of Materials, 2007, 19, 432-442.	3.2	66
224	Description of the Charge Transfer States at the Pentacene/C ₆₀ Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model. Journal of Physical Chemistry Letters, 2016, 7, 2616-2621.	2.1	66
225	Molecular Understanding of Fullerene – Electron Donor Interactions in Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1601370.	10.2	66
226	Synthesis, Crystal Structure, and Electronic Structure of a 5,15-Dialkylideneporphyrin:  A TCNQ/Porphyrin Hybrid. Journal of the American Chemical Society, 1998, 120, 10764-10765.	6.6	65
227	A Molybdenum Dithiolene Complex as <i>p</i> -Dopant for Hole-Transport Materials: A Multitechnique Experimental and Theoretical Investigation. Chemistry of Materials, 2010, 22, 524-531.	3.2	65
228	Vibrationâ€Assisted Crystallization Improves Organic/Dielectric Interface in Organic Thinâ€Film Transistors. Advanced Materials, 2013, 25, 6956-6962.	11.1	65
229	Probing Charge Transport in π-Stacked Fluorene-Based Systems. Journal of Physical Chemistry B, 2006, 110, 9482-9487.	1.2	64
230	Electronic and Optical Properties of 4 <i>H</i> -Cyclopenta[2,1- <i>b</i> :3,4- <i>b′</i>]bithiophene Derivatives and Their 4-Heteroatom-Substituted Analogues: A Joint Theoretical and Experimental Comparison. Journal of Physical Chemistry B, 2010, 114, 14397-14407.	1.2	64
231	nâ€Doping of Organic Electronic Materials Using Airâ€Stable Organometallics: A Mechanistic Study of Reduction by Dimeric Sandwich Compounds. Chemistry - A European Journal, 2012, 18, 14760-14772.	1.7	64
232	N- and P-Channel Transport Behavior in Thin Film Transistors Based on Tricyanovinyl-Capped Oligothiophenes. Journal of Physical Chemistry B, 2006, 110, 14590-14597.	1.2	63
233	Fullerene–Carbene Lewis Acid–Base Adducts. Journal of the American Chemical Society, 2011, 133, 12410-12413.	6.6	63
234	Understanding the Electronic Structure of Isoindigo in Conjugated Systems: A Combined Theoretical and Experimental Approach Macromolecules, 2013, 46, 8832-8844.	2.2	63

#	Article	IF	CITATIONS
235	Isoindigoâ€3,4â€Difluorothiophene Polymer Acceptors Yield "Allâ€Polymer―Bulkâ€Heterojunction Solar Cells with over 7 % Efficiency. Angewandte Chemie - International Edition, 2018, 57, 531-535.	7.2	63
236	Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102973.	10.2	63
237	An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices. Journal of Chemical Physics, 2011, 134, 124102.	1.2	62
238	Electronic-Structure Theory of Organic Semiconductors: Charge-Transport Parameters and Metal/Organic Interfaces. Annual Review of Materials Research, 2013, 43, 63-87.	4.3	62
239	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	6.4	62
240	Orientation of Phenylphosphonic Acid Self-Assembled Monolayers on a Transparent Conductive Oxide: A Combined NEXAFS, PM-IRRAS, and DFT Study. Langmuir, 2013, 29, 2166-2174.	1.6	61
241	Computational Methodologies for Developing Structure–Morphology–Performance Relationships in Organic Solar Cells: A Protocol Review. Chemistry of Materials, 2017, 29, 346-354.	3.2	61
242	Intra- and Intermolecular Proton Transfer in 1H(2H)-1,2,3-Triazole Based Systems. Journal of Physical Chemistry A, 2006, 110, 2322-2324.	1.1	60
243	Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9957-9964.	4.0	60
244	Dynamics in Physisorbed Monolayers of 5-Alkoxy-isophthalic Acid Derivatives at the Liquid/Solid Interface Investigated by Scanning Tunneling Microscopy. Chemistry - A European Journal, 2000, 6, 3739-3746.	1.7	59
245	Hole-vibronic coupling in oligothiophenes: impact of backbone torsional flexibility on relaxation energies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1435-1452.	1.6	59
246	Excitons Surf Along Conjugated Polymer Chains. Science, 2009, 323, 348-349.	6.0	59
247	Polymethine materials with solid-state third-order optical susceptibilities suitable for all-optical signal-processing applications. Materials Horizons, 2014, 1, 577-581.	6.4	59
248	Entanglements in <scp>P3HT</scp> and their influence on thinâ€film mechanical properties: Insights from molecular dynamics simulations. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 934-942.	2.4	59
249	Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface. Journal of Physical Chemistry C, 2015, 119, 4865-4873.	1.5	59
250	A Novel Biodegradable and Biocompatible Ceramer Prepared by the Solâ^Gel Process. Chemistry of Materials, 1997, 9, 871-874.	3.2	58
251	Assessment of the performance of tuned range-separated hybrid density functionals in predicting accurate quasiparticle spectra. Physical Review B, 2012, 86, .	1.1	58
252	Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1367-1374.	6.6	58

#	Article	IF	Citations
253	Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model. Physical Review B, 2013, 87, .	1.1	57
254	Hydrolytic Stability of Boronate Ester‣inked Covalent Organic Frameworks. Advanced Theory and Simulations, 2018, 1, 1700015.	1.3	57
255	Monodisperse Poly(triacetylene) Oligomers Extending from Monomer to Hexadecamer: Joint Experimental and Theoretical Investigation of Physical Properties. Chemistry - A European Journal, 2000, 6, 3622-3635.	1.7	56
256	Thermal Narrowing of the Electronic Bandwidths in Organic Molecular Semiconductors: Impact of the Crystal Thermal Expansion. Journal of Physical Chemistry Letters, 2012, 3, 3325-3329.	2.1	56
257	Binding Modes of Fluorinated Benzylphosphonic Acids on the Polar ZnO Surface and Impact on Work Function. Journal of Physical Chemistry C, 2012, 116, 19125-19133.	1.5	56
258	Electronic Structure of Carbazole-Based Phosphine Oxides as Ambipolar Host Materials for Deep Blue Electrophosphorescence: A Density Functional Theory Study. Chemistry of Materials, 2012, 24, 2604-2610.	3.2	56
259	Rubrene: The Interplay between Intramolecular and Intermolecular Interactions Determines the Planarization of Its Tetracene Core in the Solid State. Journal of the American Chemical Society, 2015, 137, 8775-8782.	6.6	56
260	Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing. Chemistry of Materials, 2017, 29, 2777-2787.	3.2	56
261	Dithienopyrrole–quinoxaline/pyridopyrazine donor–acceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties. Journal of Materials Chemistry, 2011, 21, 4971.	6.7	54
262	Tailoring Electronâ€Transfer Barriers for Zinc Oxide/C ₆₀ Fullerene Interfaces. Advanced Functional Materials, 2014, 24, 7381-7389.	7.8	54
263	Chargeâ€Transfer States at Organic–Organic Interfaces: Impact of Static and Dynamic Disorders. Advanced Energy Materials, 2019, 9, 1803926.	10.2	54
264	Ketonic Defects in Ladder-type Poly(p-phenylene)s. Chemistry of Materials, 2004, 16, 4667-4674.	3.2	53
265	Theoretical Investigation of Triscarbazole Derivatives As Host Materials for Blue Electrophosphorescence: Effects of Topology. Chemistry of Materials, 2011, 23, 5223-5230.	3.2	53
266	Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective. MRS Bulletin, 2013, 38, 57-64.	1.7	53
267	Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates. Journal of the American Chemical Society, 2015, 137, 11920-11923.	6.6	53
268	High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. Chemical Communications, 2007, , 1372-1374.	2.2	52
269	Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors. Journal of Chemical Physics, 2011, 135, 104703.	1.2	52
270	The Density of States and the Transport Effective Mass in a Highly Oriented Semiconducting Polymer: Electronic Delocalization in 1D. Advanced Materials, 2015, 27, 7759-7765.	11.1	52

#	Article	IF	Citations
271	A mixed-valence bis(diarylamino)stilbene: crystal structure and comparison of electronic coupling with biphenyl and tolane analogues. Chemical Communications, 2005, , 764-766.	2.2	51
272	First-principles theoretical investigation of the electronic couplings in single crystals of phenanthroline-based organic semiconductors. Journal of Chemical Physics, 2007, 126, 164704.	1.2	51
273	Preface to the <i>Chemistry of Materials</i> i>Special Issue on ∈Functional Materials. Chemistry of Materials, 2011, 23, 309-309.	3.2	51
274	Third-Order Nonlinear Optical Properties of Oligomers of Thienyleneethynylenes and Thienylenevinylene. The Journal of Physical Chemistry, 1994, 98, 10102-10111.	2.9	50
275	Electronic Polarization Effects upon Charge Injection in Oligoacene Molecular Crystals: Description via a Polarizable Force Field. Journal of Physical Chemistry C, 2013, 117, 13853-13860.	1.5	50
276	Electronic and Vibronic Contributions to Twoâ€Photon Absorption in Donor–Acceptor–Donor Squaraine Chromophores. Chemistry - A European Journal, 2008, 14, 11082-11091.	1.7	49
277	Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD. Npj Flexible Electronics, 2017, 1, .	5.1	49
278	Twisted ¨i€-system electro-optic chromophores. A CIS vs. MRD-CI theoretical investigation. Computational and Theoretical Chemistry, 2003, 633, 227-235.	1.5	48
279	Molecular Dynamics Simulations of Intercalated Poly(ε-Caprolactone)-Montmorillonite Clay Nanocomposites. Journal of Physical Chemistry B, 2004, 108, 10678-10686.	1.2	48
280	Symmetry effects on nonlocal electron-phonon coupling in organic semiconductors. Physical Review B, 2012, 85, .	1.1	48
281	Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation. Journal of Chemical Physics, 2012, 137, 164303.	1.2	48
282	Triisopropylsilylethynylâ€Functionalized Grapheneâ€Like Fragment Semiconductors: Synthesis, Crystal Packing, and Density Functional Theory Calculations. Chemistry - A European Journal, 2013, 19, 17907-17916.	1.7	48
283	Transparent Conducting Oxides of Relevance to Organic Electronics: Electronic Structures of Their Interfaces with Organic Layers. Chemistry of Materials, 2014, 26, 631-646.	3.2	48
284	Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. Chemistry of Materials, 2016, 28, 8580-8590.	3.2	48
285	Oriented Growth of Al ₂ O ₃ :ZnO Nanolaminates for Use as Electronâ€Selective Electrodes in Inverted Polymer Solar Cells. Advanced Functional Materials, 2012, 22, 1531-1538.	7.8	47
286	Voltage Losses in Organic Solar Cells: Understanding the Contributions of Intramolecular Vibrations to Nonradiative Recombinations. Advanced Energy Materials, 2018, 8, 1702227.	10.2	47
287	Defectâ€Driven Interfacial Electronic Structures at an Organic/Metalâ€Oxide Semiconductor Heterojunction. Advanced Materials, 2014, 26, 4711-4716.	11.1	46
288	Surface Polarization Drives Photoinduced Charge Separation at the P3HT/Water Interface. ACS Energy Letters, 2016, 1, 454-463.	8.8	46

#	Article	IF	CITATIONS
289	Passivation of Molecular nâ€Doping: Exploring the Limits of Air Stability. Advanced Functional Materials, 2016, 26, 3730-3737.	7.8	46
290	Organic Neutral Radical Emitters: Impact of Chemical Substitution and Electronic-State Hybridization on the Luminescence Properties. Journal of the American Chemical Society, 2020, 142, 17782-17786.	6.6	46
291	Boosting Self-Trapped Emissions in Zero-Dimensional Perovskite Heterostructures. Chemistry of Materials, 2020, 32, 5036-5043.	3.2	46
292	Impact of the Nature of the Sideâ€Chains on the Polymerâ€Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2016, 26, 5913-5921.	7.8	45
293	Atomic force microscopy study of comb-like vs. arborescent graft copolymers in thin films. Polymer, 2004, 45, 1833-1843.	1.8	44
294	Stretching and Breaking of a Molecular Junction. Small, 2006, 2, 1468-1475.	5.2	44
295	Ï€â€Stacked Oligo(phenylene vinylene)s Based on Pseudoâ€Geminal Substituted [2.2]Paracyclophanes: Impact of Interchain Geometry and Interactions on the Electronic Properties. Angewandte Chemie - International Edition, 2012, 51, 11629-11632.	7.2	44
296	Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. ACS Central Science, 2019, 5, 1892-1899.	5.3	44
297	Impact of Organic Spacers on the Carrier Dynamics in 2D Hybrid Lead-Halide Perovskites. ACS Energy Letters, 2019, 4, 17-25.	8.8	44
298	Molecular packing of non-fullerene acceptors for organic solar cells: Distinctive local morphology in Y6 vs. ITIC derivatives. Materials Today Advances, 2021, 11, 100154.	2.5	44
299	Molecular Dynamics Simulations of Nanocomposites Based on Poly($\hat{l}\mu$ -caprolactone) Grafted on Montmorillonite Clay. Journal of Physical Chemistry B, 2005, 109, 12287-12296.	1.2	43
300	First-principles study of the geometric and electronic structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal"> Au </mml:mi> <mml:mn> 13 </mml:mn> </mml:msub> </mml:math> clusters: Importance of the prism motif. Physical Review B, 2008, 77, .	1.1	43
301	Dipolar Second-Order Nonlinear Optical Chromophores Containing Ferrocene, Octamethylferrocene, and Ruthenocene Donors and Strong π-Acceptors: Crystal Structures and Comparison of π-Donor Strengths. Organometallics, 2009, 28, 1350-1357.	1.1	43
302	Materialsâ€Scale Implications of Solvent and Temperature on [6,6]â€Phenylâ€C61â€butyric Acid Methyl Ester (PCBM): A Theoretical Perspective. Advanced Functional Materials, 2013, 23, 5800-5813.	7.8	43
303	Structure and Disorder in Squaraine–C ₆₀ Organic Solar Cells: A Theoretical Description of Molecular Packing and Electronic Coupling at the Donor–Acceptor Interface. Advanced Functional Materials, 2014, 24, 3790-3798.	7.8	43
304	Organic Photovoltaics: Relating Chemical Structure, Local Morphology, and Electronic Properties. Trends in Chemistry, 2020, 2, 535-554.	4.4	43
305	Synthesis of a Fully Unsaturated"Molecular Board― Angewandte Chemie International Edition in English, 1994, 33, 2209-2212.	4.4	42
306	Borderline Class II/III Ligand-Centered Mixed Valency in a Porphyrinic Molecular Rectangle. Inorganic Chemistry, 2005, 44, 5789-5797.	1.9	42

#	Article	IF	Citations
307	Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. Advanced Functional Materials, 2018, 28, 1803418.	7.8	42
308	The interaction of poly (p-phenylenevinylene) with air. Advanced Materials, 1996, 8, 971-974.	11.1	41
309	Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties. Journal of Materials Chemistry, 2008, 18, 3157.	6.7	41
310	Photophysical Properties of an Alkyne-Bridged Bis(zinc porphyrin)â^Perylene Bis(dicarboximide) Derivative. Journal of Physical Chemistry A, 2009, 113, 10826-10832.	1.1	41
311	Electronic Structure and Charge-Transport Parameters of Functionalized Tetracene Crystals: Impact of Partial Fluorination and Alkyl or Alkoxy Derivatization. Chemistry of Materials, 2009, 21, 3593-3601.	3.2	41
312	Synthesis, experimental and theoretical characterization, and field-effect transistor properties of a new class of dibenzothiophene derivatives: From linear to cyclic architectures. Journal of Materials Chemistry, 2012, 22, 1313-1325.	6.7	41
313	Dimers of Nineteenâ€Electron Sandwich Compounds: Crystal and Electronic Structures, and Comparison of Reducing Strengths. Chemistry - A European Journal, 2014, 20, 15385-15394.	1.7	41
314	Manipulation of hot carrier cooling dynamics in two-dimensional Dion–Jacobson hybrid perovskites via Rashba band splitting. Nature Communications, 2021, 12, 3995.	5.8	41
315	Design of Ï∈-Conjugated Organic Materials for One-Dimensional Energy Transport in Nanochannels. Journal of Physical Chemistry B, 2005, 109, 4872-4880.	1.2	40
316	Chromophores in phenylenevinylene-based conjugated polymers: Role of conformational kinks and chemical defects. Journal of Chemical Physics, 2006, 125, 054901.	1.2	40
317	Competing Effects of Fluorination on the Orientation of Aromatic and Aliphatic Phosphonic Acid Monolayers on Indium Tin Oxide. Journal of Physical Chemistry C, 2013, 117, 15139-15147.	1.5	40
318	Tuning the electronic and photophysical properties of heteroleptic iridium(iii) phosphorescent emitters through ancillary ligand substitution: a theoretical perspective. Physical Chemistry Chemical Physics, 2013, 15, 6293.	1.3	40
319	Influence of Molecular Shape on Solid-State Packing in Disordered PC ₆₁ BM and PC ₇₁ BM Fullerenes. Journal of Physical Chemistry Letters, 2014, 5, 3427-3433.	2.1	40
320	Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14053-14062.	4.0	39
321	Impact of morphology on polaron delocalization in a semicrystalline conjugated polymer. Physical Chemistry Chemical Physics, 2017, 19, 3627-3639.	1.3	39
322	Every Atom Counts: Elucidating the Fundamental Impact of Structural Change in Conjugated Polymers for Organic Photovoltaics. Chemistry of Materials, 2018, 30, 2995-3009.	3.2	39
323	Hyperfluorescence-Based Emission in Purely Organic Materials: Suppression of Energy-Loss Mechanisms via Alignment of Triplet Excited States. , 2020, 2, 1412-1418.		39
324	Organic Photovoltaics: Understanding the Preaggregation of Polymer Donors in Solution and Its Morphological Impact. Journal of the American Chemical Society, 2021, 143, 1822-1835.	6.6	39

#	Article	IF	CITATIONS
325	Electronic Structure and Linear and Nonlinear Optical Properties of Symmetrical and Unsymmetrical Squaraine Dyes. Chemistry - A European Journal, 1997, 3, 530-537.	1.7	38
326	Dipolar Ferrocene and Ruthenocene Second-Order Nonlinear Optical Chromophores: A Time-Dependent Density Functional Theory Investigation of Their Absorption Spectra. Organometallics, 2013, 32, 6061-6068.	1.1	38
327	Effect of Substitution on the Hole Mobility of Bis(diarylamino)biphenyl Derivatives Doped in Poly(Styrene). Chemistry of Materials, 2003, 15, 994-999.	3.2	37
328	Efficient acceptor groups for NLO chromophores: competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran. Journal of Materials Chemistry, 2007, 17, 2944-2949.	6.7	37
329	Theoretical Characterization of Charge Transport in Oneâ€Dimensional Collinear Arrays of Organic Conjugated Molecules. ChemPhysChem, 2010, 11, 1062-1068.	1.0	37
330	Noncovalent Interactions and Impact of Charge Penetration Effects in Linear Oligoacene Dimers and Single Crystals. Chemistry of Materials, 2016, 28, 3990-4000.	3.2	37
331	Tetraaryl pyrenes: photophysical properties, computational studies, crystal structures, and application in OLEDs. Journal of Materials Chemistry C, 2016, 4, 3041-3058.	2.7	37
332	Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal Ï€â€Conjugated Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1900355.	11.1	37
333	Electrochemical Strategies for the Strengthening of Polymerâ 'Metal Interfaces. European Journal of Inorganic Chemistry, 2001, 2001, 1097-1107.	1.0	36
334	Chargeâ€Transport Properties of F ₆ TNAPâ€Based Chargeâ€Transfer Cocrystals. Advanced Functional Materials, 2019, 29, 1904858.	7.8	36
335	Resolving Atomicâ€6cale Interactions in Nonfullerene Acceptor Organic Solar Cells with Solidâ€6tate NMR Spectroscopy, Crystallographic Modelling, and Molecular Dynamics Simulations. Advanced Materials, 2022, 34, e2105943.	11.1	36
336	Materials for Multiphoton 3D Microfabrication. MRS Bulletin, 2007, 32, 561-565.	1.7	35
337	Cyclometallated Pt(ii) and Pd(ii) complexes with a trithiacrown ligand. Dalton Transactions, 2008, , 1872.	1.6	35
338	When Electrons Leave Holes in Organic Solar Cells. Science, 2014, 343, 492-493.	6.0	35
339	Impact of the Nature of the Excited-State Transition Dipole Moments on the Third-Order Nonlinear Optical Response of Polymethine Dyes for All-Optical Switching Applications. ACS Photonics, 2014, 1, 261-269.	3.2	35
340	Openâ€Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Chargeâ€Transfer Bands. Advanced Energy Materials, 2017, 7, 1601995.	10.2	35
341	A Thiazole–Naphthalene Diimide Based n-Channel Donor–Acceptor Conjugated Polymer. Macromolecules, 2018, 51, 7320-7328.	2.2	35
342	Thermally Activated Delayed Fluorescence Properties of Trioxoazatriangulene Derivatives Modified with Electron Donating Groups. Advanced Optical Materials, 2021, 9, 2002174.	3.6	35

#	Article	IF	Citations
343	Structural dependence of the optical properties of narrow bandgap semiconductors with orthogonal donor–acceptor geometries. Chemical Science, 2013, 4, 1807.	3.7	34
344	Nonlocal electron-phonon coupling in organic semiconductor crystals: The role of acoustic lattice vibrations. Journal of Chemical Physics, 2013, 138, 204713.	1.2	34
345	Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2016, 28, 8181-8189.	3.2	34
346	Highâ€Performance Ternary Perovskite–Organic Solar Cells. Advanced Materials, 2022, 34, e2109348.	11.1	34
347	Photo-oxidation of poly(p-phenylenevinylene). Advanced Materials, 1997, 9, 1027-1031.	11.1	33
348	STM Imaging of a Heptanuclear Ruthenium(II) Dendrimer, Mono-Add Layer on Graphite. Chemistry - A European Journal, 2000, 6, 1331-1336.	1.7	33
349	Effective conjugation and Raman intensities in oligo(para-phenylene)s: A microscopic view from first-principles calculations. Journal of Chemical Physics, 2005, 122, 114511.	1.2	33
350	A New Class of Cyanine-like Dyes with Large Bond-Length Alternation. Journal of the American Chemical Society, 2009, 131, 6099-6101.	6.6	33
351	Mono- and Dicarbonyl-Bridged Tricyclic Heterocyclic Acceptors: Synthesis and Electronic Properties. Journal of Organic Chemistry, 2011, 76, 2660-2671.	1.7	33
352	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98.	6.4	33
353	Purely Organic Emitters for Multiresonant Thermally Activated Delay Fluorescence: Design of Highly Efficient Sulfur and Selenium Derivatives., 2022, 4, 440-447.		33
354	Excited State Intramolecular Proton Transfer in 2-(2â€~-Arylsulfonamidophenyl)benzimidazole Derivatives:  Insights into the Origin of Donor Substituent-Induced Emission Energy Shifts. Journal of Physical Chemistry A, 2007, 111, 4584-4595.	1.1	32
355	Doping Molecular Wires. Nano Letters, 2009, 9, 2559-2564.	4.5	32
356	Accurate description of torsion potentials in conjugated polymers using density functionals with reduced self-interaction error. Journal of Chemical Physics, 2014, 140, 054310.	1.2	32
357	Organic Solar Cells Based on Non-fullerene Small-Molecule Acceptors: Impact of Substituent Position. Matter, 2020, 2, 119-135.	5.0	32
358	Luminescence and Stability Enhancement of Inorganic Perovskite Nanocrystals via Selective Surface Ligand Binding. ACS Nano, 2021, 15, 17998-18005.	7.3	32
359	Limitations of Essential-State Models for the Description of Two-Photon Absorption Processes: The Example of Bis(dioxaborine)-Substituted Chromophoresâ€. Journal of Physical Chemistry B, 2004, 108, 8641-8646.	1.2	31
360	Modification of the Galliumâ€Doped Zinc Oxide Surface with Selfâ€Assembled Monolayers of Phosphonic Acids: A Joint Theoretical and Experimental Study. Advanced Functional Materials, 2014, 24, 3593-3603.	7.8	31

#	Article	IF	Citations
361	nâ€Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions. Chemistry - A European Journal, 2015, 21, 10878-10885.	1.7	31
362	An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chemistry of Materials, 2019, 31, 8577-8581.	3.2	31
363	Vibronic coupling in the ground and excited states of the naphthalene cation. Chemical Communications, 2004, , 1702-1703.	2.2	30
364	Electronic and vibronic interactions at weakly bound organic interfaces: The case of pentacene on graphite. Physical Review B, 2008, 78, .	1.1	30
365	Charge-Transport Properties of the Tetraphenylbis(indolo[1,2- <i>a</i>)] Quinoline and 5,7-Diphenylindolo[1,2- <i>a</i>] Quinoline Crystals. Journal of Physical Chemistry C, 2010, 114, 20401-20409.	1.5	30
366	Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer–Fullerene Mixing and Packing and on the Fullerene–Fullerene Connecting Network. Advanced Functional Materials, 2018, 28, 1705868.	7.8	30
367	Impact of Structural Defects on the Elastic Properties of Two-Dimensional Covalent Organic Frameworks (2D COFs) under Tensile Stress. Chemistry of Materials, 2021, 33, 4529-4540.	3.2	30
368	Using End Groups to Tune the Linear and Nonlinear Optical Properties of Bis(dioxaborine)‶erminated Polymethine Dyes. ChemPhysChem, 2010, 11, 130-138.	1.0	29
369	Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15524-15534.	4.0	29
370	Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications. Chemistry of Materials, 2019, 31, 1507-1519.	3.2	29
371	High-efficiency blue-green electrophosphorescent light-emitting devices using a bis-sulfone as host in the emitting layer. Organic Electronics, 2011, 12, 1314-1318.	1.4	28
372	Packing and Disorder in Substituted Fullerenes. Journal of Physical Chemistry C, 2016, 120, 17242-17250.	1.5	28
373	Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing. Advanced Energy Materials, 2017, 7, 1602713.	10.2	28
374	Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5171-5176.	2.1	28
375	Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling. Nano Letters, 2020, 20, 963-970.	4.5	28
376	Magnetic dipole and electric quadrupole contributions to second-harmonic generation in C60-A valence effective hamiltonian study. Advanced Materials, 1994, 6, 486-488.	11.1	27
377	Molecular Dynamics Study of Îμ-Caprolactone Intercalated in Wyoming Sodium Montmorillonite. Langmuir, 2003, 19, 8287-8291.	1.6	27
378	A polarized response. Nature Materials, 2006, 5, 929-930.	13.3	27

#	Article	IF	Citations
379	Charge transport in oligo phenylene and phenylene–thiophene nanofibers. Organic Electronics, 2009, 10, 1228-1234.	1.4	27
380	Comparison of Thiophene–Pyrrole Oligomers with Oligothiophenes: A Joint Experimental and Theoretical Investigation of Their Structural and Spectroscopic Properties. Chemistry - A European Journal, 2010, 16, 6866-6876.	1.7	27
381	Thieno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dioneâ€3,4â€difluorothiophene Polymer Acceptors for Efficient Allâ€Polymer Bulk Heterojunction Solar Cells. Angewandte Chemie, 2016, 128, 13190-13194.	1.6	27
382	Nature of the Interfaces Between Stoichiometric and Underâ€Stoichiometric MoO ₃ and 4,4′â€ <i>N</i> , <i>N</i> ,62â€dicarbazoleâ€biphenyl: A Combined Theoretical and Experimental Study. Advance Functional Materials, 2013, 23, 6091-6099.	e d .8	26
383	Effect of Solvent Additives on the Solution Aggregation of Phenyl-C ₆₁ –Butyl Acid Methyl Ester (PCBM). Chemistry of Materials, 2015, 27, 8261-8272.	3.2	26
384	Comparison of the Impact of Zinc Vacancies on Charge Separation and Charge Transfer at ZnO/Sexithienyl and ZnO/Fullerene Interfaces. Advanced Materials, 2016, 28, 3928-3936.	11.1	26
385	Impact of Active Layer Morphology on Bimolecular Recombination Dynamics in Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 24954-24961.	1.5	26
386	Assessment of the Factors Influencing Chargeâ€Carrier Mobility Measurements in Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1803096.	7.8	26
387	All-Polymer Solar Cells: Impact of the Length of the Branched Alkyl Side Chains on the Polymer Acceptors on the Interchain Packing and Electronic Properties in Amorphous Blends. Chemistry of Materials, 2019, 31, 6239-6248.	3.2	26
388	Synergistic Use of Bithiazole and Pyridinyl Substitution for Effective Electron Transport Polymer Materials. Chemistry of Materials, 2019, 31, 3957-3966.	3.2	26
389	Two-Photon Absorption in Linear Bis-dioxaborine Compoundsâ€"The Impact of Correlation-Induced Oscillator-Strength Redistribution. ChemPhysChem, 2004, 5, 982-988.	1.0	25
390	Cooperative CH···π Interactions in the Crystal Structure of 2,5-Di(3-biphenyl)-1,1-dimethyl-3,4-diphenyl-silole and Its Effect on Its Electronic Properties. Journal of Physical Chemistry C, 2007, 111, 9543-9547.	1.5	25
391	Electronic structure of the pentacene–gold interface: A density-functional theory study. Organic Electronics, 2009, 10, 1571-1578.	1.4	25
392	Charge-Transport Parameters of Acenedithiophene Crystals: Realization of One-, Two-, or Three-Dimensional Transport Channels through Alkyl and Phenyl Derivatizations. Journal of Physical Chemistry C, 2012, 116, 5215-5224.	1.5	25
393	Substrate-Induced Variations of Molecular Packing, Dynamics, and Intermolecular Electronic Couplings in Pentacene Monolayers on the Amorphous Silica Dielectric. ACS Nano, 2014, 8, 690-700.	7.3	25
394	Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor–acceptor conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 8873-8879.	2.7	25
395	Benchmarking Density Functional Theory Approaches for the Description of Symmetry Breaking in Long Polymethine Dyes. Journal of Physical Chemistry C, 2016, 120, 9975-9984.	1.5	25
396	Charge Delocalization in Oligomers of Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2- <i>b</i> jthiophene) (PBTTT). Journal of Physical Chemistry C, 2016, 120, 9671-9677.	1.5	25

#	Article	IF	Citations
397	Electronic Properties of 1,5-Diaminonaphthalene:Tetrahalo-1,4-benzoquinone Donor–Acceptor Cocrystals. Journal of Physical Chemistry C, 2017, 121, 23633-23641.	1.5	25
398	Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms. Advanced Functional Materials, 2018, 28, 1704438.	7.8	25
399	Discovery of Non-linear Optical Materials by Function-Based Screening of Multi-component Solids. CheM, 2018, 4, 150-161.	5.8	25
400	Impact of solution temperature-dependent aggregation on the solid-state packing and electronic properties of polymers for organic photovoltaics. Journal of Materials Chemistry C, 2018, 6, 13162-13170.	2.7	25
401	Quantum Well Energetics of an <i>n</i> = 2 Ruddlesden–Popper Phase Perovskite. Advanced Energy Materials, 2019, 9, 1901005.	10.2	25
402	Thermally Activated Delayed Fluorescence Sensitization for Highly Efficient Blue Fluorescent Emitters. Advanced Functional Materials, 2020, 30, 2005898.	7.8	25
403	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	6.6	25
404	Evidence for Physisorption of Aluminum on the Surface of Electroluminescent Sexiphenyl. Advanced Materials, 1998, 10, 1038-1043.	11.1	24
405	An anionic organic mixed-valence system with a remarkably well-resolved vibrational structure in its intervalence band. Chemical Communications, 2003, , 194-195.	2.2	24
406	Magnus' Green Salt Revisited: Impact of Platinum–Platinum Interactions on Electronic Structure and Carrier Mobilities. Advanced Materials, 2006, 18, 2039-2043.	11.1	24
407	Trends in Electron-Vibration and Electronic Interactions in Bis(dimethylamino) Mixed-Valence Systems: A Joint Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2008, 112, 7959-7967.	1.5	24
408	Ground-State Electronic Structure in Charge-Transfer Complexes Based on Carbazole and Diarylamine Donors. Journal of Physical Chemistry C, 2011, 115, 10823-10835.	1.5	24
409	Silver-Decorated Cylindrical Nanopores: Combining the Third Dimension with Chemical Enhancement for Efficient Trace Chemical Detection with SERS. Journal of Physical Chemistry C, 2012, 116, 13917-13927.	1.5	24
410	Synthesis and characterization of naphthalene diimide/diethynylbenzene copolymers. Polymer, 2012, 53, 1072-1078.	1.8	24
411	Intramolecular reorganization energy in zinc phthalocyanine and its fluorinated derivatives: a joint experimental and theoretical study. Chemical Communications, 2013, 49, 6069.	2.2	24
412	Impact of exact exchange in the description of the electronic structure of organic charge-transfer molecular crystals. Physical Review B, 2014, 90, .	1.1	24
413	Organic Fieldâ€Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometerâ€Sized Devices. Advanced Functional Materials, 2017, 27, 1605715.	7.8	24
414	Crystal Engineering of Dibenzothiophenothieno[3,2- <i>b</i>)thiophene (DBTTT) Isomers for Organic Field-Effect Transistors. Chemistry of Materials, 2018, 30, 7587-7592.	3.2	24

#	Article	IF	Citations
415	Engineering Surface Orientations for Efficient and Stable Hybrid Perovskite Single-Crystal Solar Cells. ACS Energy Letters, 2022, 7, 1544-1552.	8.8	24
416	Analysis of the sign reversal of the second-order molecular polarizability in polymethineimine chains. Journal of Chemical Physics, 2001, 115, 6766-6774.	1.2	23
417	Torsion Potential in Polydiacetylene: Accurate Computations on Oligomers Extrapolated to the Polymer Limit. Journal of the American Chemical Society, 2010, 132, 13313-13319.	6.6	23
418	Regiochemistry of Poly(3-hexylthiophene): Synthesis and Investigation of a Conducting Polymer. Journal of Chemical Education, 2010, 87, 522-525.	1.1	23
419	Benzo[1,2-b:6,5-b′]dithiophene(dithiazole)-4,5-dione derivatives: synthesis, electronic properties, crystal packing and charge transport. Journal of Materials Chemistry C, 2013, 1, 1467.	2.7	23
420	Charge Delocalization through Benzene, Naphthalene, and Anthracene Bridges in π-Conjugated Oligomers: An Experimental and Quantum Chemical Study. Journal of Physical Chemistry B, 2013, 117, 6304-6317.	1.2	23
421	Toward a Robust Quantum-Chemical Description of Organic Mixed-Valence Systems. Journal of Physical Chemistry C, 2014, 118, 3925-3934.	1.5	23
422	Radiative and Nonradiative Recombinations in Organic Radical Emitters: The Effect of Guest–Host Interactions. Advanced Functional Materials, 2020, 30, 2002916.	7.8	23
423	Theoretical Characterization and Design of End-Substituted Distyrylbenzenes as Excitation Shuttles in One-Dimensional Channels. Advanced Materials, 2004, 16, 1193-1197.	11.1	22
424	Influence of contact geometry and molecular derivatization on the interfacial interactions between gold and conjugated wires. Chemical Physics Letters, 2004, 387, 502-508.	1.2	22
425	Single electron transistor with a single conjugated molecule. Current Applied Physics, 2004, 4, 554-558.	1.1	22
426	Porphyrin dimers: A theoretical understanding of the impact of electronic coupling strength on the two-photon absorption properties. Journal of Materials Chemistry, 2009, 19, 7545.	6.7	22
427	Structure–processing–property correlations in solution-processed, small-molecule, organic solar cells. Journal of Materials Chemistry C, 2013, 1, 5250.	2.7	22
428	Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells. Molecular Simulation, 2017, 43, 1523-1531.	0.9	22
429	Bond Ellipticity Alternation: An Accurate Descriptor of the Nonlinear Optical Properties of π-Conjugated Chromophores. Journal of Physical Chemistry Letters, 2018, 9, 1377-1383.	2.1	22
430	Low Energetic Disorder in Small-Molecule Non-Fullerene Electron Acceptors., 2019, 1, 350-353.		22
431	Pathway Complexity in the Stacking of Imine-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 7104-7111.	3.2	22
432	Nonfullerene Smallâ€Molecule Acceptors for Organic Photovoltaics: Understanding the Impact of Methoxy Substitution Position on Molecular Packing and Electronâ€Transfer Properties. Advanced Functional Materials, 2019, 29, 1806845.	7.8	22

#	Article	IF	CITATIONS
433	The Role of Intermolecular Interactions on the Performance of Organic Thermally Activated Delayed Fluorescence (TADF) Materials. Advanced Optical Materials, 2021, 9, 2002135.	3.6	22
434	Electronic Properties of the 2,6-Diiododithieno[3,2- <i>b</i> :2â \in 2,3â \in 2- <i>d</i>]thiophene Molecule and Crystal: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry B, 2010, 114, 749-755.	1.2	21
435	The nature of the aluminum–aluminum oxide interface: A nanoscale picture of the interfacial structure and energy-level alignment. Organic Electronics, 2013, 14, 569-574.	1.4	21
436	Nonlinear Optical Properties of X(C $<$ sub $>$ 6 $<$ /sub $>$ H $<$ sub $>$ 5 $<$ /sub $>$) $<$ sub $>$ 4 $<$ /sub $>$ (X = B $<$ sup $>$ â \in " $<$ /sup $>$, C,) Tj ETO Journal of the American Chemical Society, 2015, 137, 9635-9642.	Qq0 0 0 rg 6.6	gBT /Overlo
437	Controllable molecular aggregation and fluorescence properties of 1,3,4-oxadiazole derivatives. Journal of Materials Chemistry C, 2015, 3, 11681-11688.	2.7	21
438	Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility. Journal of Chemical Physics, 2017, 147, 134904.	1.2	21
439	Excited-State Properties and Emission Spectra of Nonplanar Heterocyclic Helicenes. Journal of Physical Chemistry A, 2006, 110, 11018-11024.	1.1	20
440	Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications. Journal of Physical Chemistry C, 2014, 118, 23575-23585.	1.5	20
441	Characterizing the Polymer:Fullerene Intermolecular Interactions. Chemistry of Materials, 2016, 28, 1446-1452.	3.2	20
442	Increased Exciton Delocalization of Polymer upon Blending with Fullerene. Advanced Materials, 2018, 30, 1801392.	11.1	20
443	Dynamically Switching the Electronic and Electrostatic Properties of Indium–Tin Oxide Electrodes with Photochromic Monolayers: Toward Photoswitchable Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 1102-1110.	2.4	20
444	Electronic Structure of Multicomponent Organic Molecular Materials: Evaluation of Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 2020, 16, 3712-3719.	2.3	20
445	1,3â€Bis(2â€ŧhienylmethylene)1â€1 <i>H</i> ,3 <i>H</i> 1â€ŧhieno[3,4â€ <i>c</i>]thiophene: A Precursor for a New Band Gap Polymer. Chemische Berichte, 1993, 126, 1487-1491.	v Low 0.2	19
446	Comparative studies of the geometric and electronic properties of 1,1-disubstituted-2,3,4,5-tetraphenylsiloles and 1,1,2,2-tetramethyl-3,4,5,6-tetraphenyl-1,2-disila-3,5-cyclohexadiene. Journal of Materials Chemistry, 2006, 16, 3814-3822.	6.7	19
447	Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores. Journal of Chemical Physics, 2006, 125, 044101.	1.2	19
448	2,6-Diacylnaphthalene-1,8:4,5-Bis(dicarboximides): Synthesis, Reduction Potentials, and Core Extension. Journal of Organic Chemistry, 2012, 77, 5544-5551.	1.7	19
449	Improving the Stability of Organic Semiconductors: Distortion Energy versus Aromaticity in Substituted Bistetracene. Chemistry of Materials, 2016, 28, 8504-8512.	3.2	19
450	Effects of <i>meso</i> -M(PPh ₃) ₂ Cl (M = Pd, Ni) substituents on the linear and third-order nonlinear optical properties of chalcogenopyrylium-terminated heptamethines in solution and solid states. Journal of Materials Chemistry C, 2018, 6, 3613-3620.	2.7	19

#	Article	IF	Citations
451	Effect of Bulky Substituents on Thiopyrylium Polymethine Aggregation in the Solid State: A Theoretical Evaluation of the Implications for All-Optical Switching Applications. Chemistry of Materials, 2014, 26, 6439-6447.	3.2	18
452	Impact of Phonon Dispersion on Nonlocal Electron–Phonon Couplings in Organic Semiconductors: The Naphthalene Crystal as a Case Study. Journal of Physical Chemistry C, 2018, 122, 44-49.	1.5	18
453	Doping Modulation of the Charge Injection Barrier between a Covalent Organic Framework Monolayer and Graphene. Chemistry of Materials, 2020, 32, 9228-9237.	3.2	18
454	Excited-state localization effects in alternating meta- and para-linked poly(phenylene-vinylene)s. Chemical Physics, 2004, 297, 143-151.	0.9	17
455	Charge-Transport Properties of the 1,4-Diiodobenzene Crystal: A Quantum-Mechanical Study. Chemistry of Materials, 2008, 20, 5832-5838.	3.2	17
456	Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. Journal of Materials Chemistry, 2012, 22, 4371.	6.7	17
457	Dynamics, Miscibility, and Morphology in Polymer:Molecule Blends: The Impact of Chemical Functionality. Chemistry of Materials, 2015, 27, 7643-7651.	3.2	17
458	Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error. Journal of Physical Chemistry Letters, 2017, 8, 2507-2512.	2.1	17
459	Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles. ACS Applied Materials & Langmuir†Interfaces, 2018, 10, 11995-12004.	4.0	17
460	Suppression of Concentration Quenching in Orthoâ€Substituted Thermally Activated Delayed Fluorescence Emitters. Advanced Theory and Simulations, 2020, 3, 1900185.	1.3	17
461	Structural and Electronic Impact of an Asymmetric Organic Ligand in Diammonium Lead Iodide Perovskites. Advanced Energy Materials, 2020, 10, 1903900.	10.2	17
462	Developing molecular-level models for organic field-effect transistors. National Science Review, 2021, 8, nwaa167.	4.6	17
463	Effect of the chromophore donor group and ferrocene doping on the dynamic range, gain, and phase shift in photorefractive polymers. Journal of Chemical Physics, 2000, 113, 5439.	1.2	16
464	An Introduction to the Electronic Structure of <i>i∈</i> -Conjugated Molecules and Polymers, and to the Concept of Electronic Bands. Materials and Energy, 2016, , 1-18.	2.5	16
465	Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems. Journal of Chemical Physics, 2017, 146, 224705.	1.2	16
466	Efficient Electron Mobility in an All-Acceptor Napthalenediimide-Bithiazole Polymer Semiconductor with Large Backbone Torsion. ACS Applied Materials & English (2018), 10, 40070-40077.	4.0	16
467	Three-photon absorption in anthracene-porphyrin-anthracene triads: A quantum-chemical study. Journal of Chemical Physics, 2004, 121, 11060.	1.2	15
468	Hexaazatriisothianaphthenes: new electron-transport mesogens?. Tetrahedron, 2004, 60, 3283-3291.	1.0	15

#	Article	IF	CITATIONS
469	Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	15
470	Electronic and Charge-Transport Properties of the Au ₃ (CH ₃ Nâ•COCH ₃) ₃ Crystal: A Density Functional Theory Study. Journal of Physical Chemistry Letters, 2013, 4, 2186-2189.	2.1	15
471	Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport. Physical Review B, 2014, 90, .	1.1	15
472	Quasi-One-Dimensional Charge Transport Can Lead to Nonlinear Current Characteristics in Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2018, 9, 6550-6555.	2.1	15
473	Large Out-of-Plane Deformations of Two-Dimensional Covalent Organic Framework (COF) Sheets. Journal of Physical Chemistry Letters, 2018, 9, 4215-4220.	2.1	15
474	Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells. Chemistry of Materials, 2019, 31, 9729-9741.	3.2	15
475	Evolution of the Nature of Excitons and Electronic Couplings in Hybrid 2D Perovskites as a Function of Organic Cation Ï€â€Conjugation. Advanced Functional Materials, 2022, 32, 2108662.	7.8	15
476	Synthesis, Spectroscopy, Nonlinear Optics, and Theoretical Investigations of Thienylethynyl Octopoles with a Tunable Core. Chemistry - A European Journal, 2009, 15, 8223-8234.	1.7	14
477	Small Optical Gap Molecules and Polymers: Using Theory to Design More Efficient Materials for Organic Photovoltaics. Topics in Current Chemistry, 2013, 352, 1-38.	4.0	14
478	Workâ€Function Modification of Au and Ag Surfaces upon Deposition of Selfâ€Assembled Monolayers: Influence of the Choice of the Theoretical Approach and the Thiol Decomposition Scheme. ChemPhysChem, 2013, 14, 2939-2946.	1.0	14
479	Spectroscopy and control of near-surface defects in conductive thin film ZnO. Journal of Physics Condensed Matter, 2016, 28, 094007.	0.7	14
480	Impact of secondary donor units on the excited-state properties and thermally activated delayed fluorescence (TADF) efficiency of pentacarbazole-benzonitrile emitters. Journal of Chemical Physics, 2020, 153, 144708.	1.2	14
481	Understanding charge transport in donor/acceptor blends from large-scale device simulations based on experimental film morphologies. Energy and Environmental Science, 2020, 13, 601-615.	15.6	14
482	Impact of Imine Bond Orientations on the Geometric and Electronic Structures of Imineâ€based Covalent Organic Frameworks. Chemistry - an Asian Journal, 2021, 16, 3781-3789.	1.7	14
483	Control of luminescence in conjugated polymers through control of chain microstructure. Journal of Materials Chemistry, 2007, 17, 907-912.	6.7	13
484	2012: A Banner Year for Chemistry of Materials. Chemistry of Materials, 2013, 25, 1-2.	3.2	13
485	Benchmarking Post-Hartree–Fock Methods To Describe the Nonlinear Optical Properties of Polymethines: An Investigation of the Accuracy of Algebraic Diagrammatic Construction (ADC) Approaches. Journal of Chemical Theory and Computation, 2016, 12, 5465-5476.	2.3	13
486	Isoindigoâ€3,4â€Difluorothiophene Polymer Acceptors Yield "Allâ€Polymer―Bulkâ€Heterojunction Solar Cellwith over 7 % Efficiency. Angewandte Chemie, 2018, 130, 540-544.	^{\$} 1.6	13

#	Article	IF	Citations
487	Impact of chemical modifications on the luminescence properties of organic neutral radical emitters. Journal of Materials Chemistry C, 2021, 9, 10794-10801.	2.7	13
488	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	11.1	13
489	Effect of Ion Coordination on the Conformational and Electronic Structure of 3,4-Bis(alkylthio)thiophenes. European Journal of Inorganic Chemistry, 2001, 2001, 821-828.	1.0	12
490	Electronic structure of self-assembled (fluoro)methylthiol monolayers on the Au(111) surface: Impact of fluorination and coverage density. Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 70-77.	0.8	12
491	An Error and Efficiency Analysis of Approximations to Møllerâ^'Plesset Perturbation Theory. Journal of Chemical Theory and Computation, 2010, 6, 3681-3687.	2.3	12
492	Assembly and Characterization of Well-Defined High-Molecular-Weight Poly(<i>p</i> p>henylene) Polymer Brushes. Chemistry of Materials, 2011, 23, 4367-4374.	3.2	12
493	Reflections on charge transport. Nature Nanotechnology, 2013, 8, 230-231.	15.6	12
494	Structural variations to a donor polymer with low energy losses. Journal of Materials Chemistry A, 2017, 5, 18618-18626.	5.2	12
495	Why Can High Chargeâ€Carrier Mobilities be Achieved Along Ï€â€Conjugated Polymer Chains with Alternating Donor–Acceptor Moieties?. Advanced Theory and Simulations, 2018, 1, 1800016.	1.3	12
496	Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 3265-3273.	3.2	12
497	Molecular Packing in the Active Layers of Organic Solar Cells Based on Non-Fullerene Acceptors: Impact of Isomerization on Charge Transport, Exciton Dissociation, and Nonradiative Recombination. ACS Applied Energy Materials, 2021, 4, 4002-4011.	2.5	12
498	Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Lowâ€Disorder Molecular Semiconductors. Advanced Materials, 2021, 33, e2008708.	11.1	12
499	Lower limits for non-radiative recombination loss in organic donor/acceptor complexes. Materials Horizons, 2022, 9, 325-333.	6.4	12
500	Theoretical investigation of the molecular structure of aluminium triisopropoxide and its complexes in ring-opening polymerization. Macromolecular Theory and Simulations, 1996, 5, 525-546.	0.6	11
501	Electronic structure of polydithienothiophene materials. Synthetic Metals, 1999, 101, 175-176.	2.1	11
502	Computational Design of Functional Materials. Chemistry of Materials, 2017, 29, 2399-2401.	3.2	11
503	Short Excited-State Lifetimes Enable Photo-Oxidatively Stable Rubrene Derivatives. Journal of Physical Chemistry A, 2019, 123, 7558-7566.	1.1	11
504	Electronic, vibrational, and charge-transport properties of benzothienobenzothiophene–TCNQ co-crystals. Materials Chemistry Frontiers, 2020, 4, 3623-3631.	3.2	11

#	Article	IF	CITATIONS
505	Theoretical Prediction of Potentially New Highly Conducting Polymer Complexes: Veh Study of Nitrogen and Oxygen Containing Conjugated Polymers. Molecular Crystals and Liquid Crystals, 1985, 118, 121-124.	0.9	10
506	The Conformation of Amine- and Amide-Terminated Poly(Propylene Imine) Dendrimers as Investigated by Molecular Simulation Methods. Journal of Physical Chemistry B, 2005, 109, 19897-19907.	1.2	10
507	Molecular Modeling Simulations of the Morphology of Polyphenylene Dendrimers. Journal of Physical Chemistry B, 2007, 111, 9218-9227.	1.2	10
508	A theoretical view on self-assembled monolayers in organic electronic devices. Proceedings of SPIE, 2008, , .	0.8	10
509	Quantum Dynamics of the Excitedâ€State Intramolecular Proton Transfer in 2â€(2′â€Hydroxyphenyl)benzothiazole. Israel Journal of Chemistry, 2009, 49, 187-197.	1.0	10
510	Surface Modification of Indiumâ€Tinâ€Oxide Via Selfâ€Assembly of a Donorâ€Acceptor Complex: A Density Functional Theory Study. Advanced Materials, 2012, 24, 687-693.	11.1	10
511	Molecular understanding of organic solar cells: The challenges. AIP Conference Proceedings, 2013, , .	0.3	10
512	Vibronic Coupling in the Ground State of Oligoacene Cations: The Performance of Range-Separated Hybrid Density Functionals. Journal of Physical Chemistry C, 2014, 118, 154-158.	1.5	10
513	Electronic Structure of the Perylene–Zinc Oxide Interface: Computational Study of Photoinduced Electron Transfer and Impact of Surface Defects. Journal of Physical Chemistry C, 2015, 119, 18843-18858.	1.5	10
514	Topological Transformation of Ï€â€Conjugated Molecules Reduces Resistance to Crystallization. Angewandte Chemie - International Edition, 2017, 56, 9318-9321.	7.2	10
515	Assessment of Front-Substituted Zwitterionic Cyanine Polymethines for All-Optical Switching Applications. Journal of Physical Chemistry C, 2017, 121, 14166-14175.	1.5	10
516	Noncovalent Interactions in Organic Electronic Materials., 2017,, 277-302.		10
517	Quantumâ€Chemical Evaluation of Impact of Chlorination versus Fluorination on the Electronic Properties of Donors and Acceptors for Organic Solar Cells. Advanced Theory and Simulations, 2019, 2, 1900136.	1.3	10
518	Electronic Structure of Zinc-5,10,15,20-tetraethynylporphyrin: Evolution from the Molecule to a One-Dimensional Chain, a Two-Dimensional Covalent Organic Framework, and a Nanotube. Chemistry of Materials, 2022, 34, 1334-1341.	3.2	10
519	Characterization of [C6H7N]+Ë™ radical cations by tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 1992, 6, 135-139.	0.7	9
520	Cyanineâ€Like Dyes with Large Bondâ€Length Alternation. Chemistry - A European Journal, 2013, 19, 10370-10377.	1.7	9
521	Correlating Non-Geminate Recombination with Film Structure: A Comparison of Polythiophene: Fullerene Bilayer and Blend Films. Journal of Physical Chemistry Letters, 2014, 5, 3669-3676.	2.1	9
522	Synthesis and properties of isoindigo and benzo[1,2-⟨i⟩b⟨/i⟩:4,5-⟨i⟩b⟨/i⟩′]bis[⟨i⟩b⟨/i⟩]benzothiophene oligomers. Chemical Communications, 2018, 54, 11152-11155.	2.2	9

#	Article	IF	CITATIONS
523	Impact of Hydroxylation and Hydration on the Reactivity of αâ€Fe 2 O 3 (0001) and (102) Surfaces under Environmental and Electrochemical Conditions. Advanced Energy Materials, 2018, 8, 1800545.	10.2	9
524	Emergence of a Two-Dimensional Topological Dirac Semimetal Phase in a Phthalocyanine-Based Covalent Organic Framework. Chemistry of Materials, 2022, 34, 3178-3184.	3.2	9
525	Comment on   Role of disorder in the conduction mechanism of polyanilines''. Physical Review Letter 1990, 65, 526-526.	^{rs} 2.9	8
526	Effect of Medium Polarity on the Second-Order Polarizability of an Octupolar Chromophore: An ab initio Reaction Field Study of Triaminotrinitrobenzene. European Journal of Organic Chemistry, 1998, 1998, 1267-1269.	1.2	8
527	Order of Magnitude Effects of Thiazole Regioisomerism on the Nearâ€IR Twoâ€Photon Crossâ€Sections of Dipolar Chromophores. Advanced Functional Materials, 2008, 18, 794-801.	7.8	8
528	Characterization of the structural, mechanical, and electronic properties of fullerene mixtures: a molecular simulations description. Journal of Materials Chemistry C, 2018, 6, 3642-3650.	2.7	8
529	Modeling of Actualâ€Size Organic Electronic Devices from Efficient Molecularâ€Scale Simulations. Advanced Functional Materials, 2018, 28, 1801460.	7.8	8
530	Electronic structure of confined carbyne from joint wavelength-dependent resonant Raman spectroscopy and density functional theory investigations. Carbon, 2022, 189, 276-283.	5.4	8
531	Simulations of the emission spectra of fac-tris(2-phenylpyridine) iridium and Duschinsky rotation effects using the Herman–Kluk semiclassical initial value representation method. Journal of Chemical Physics, 2008, 129, 214305.	1.2	7
532	Rationalization of the Selectivity in the Optimization of Processing Conditions for High-Performance Polymer Solar Cells Based on the Polymer Self-Assembly Ability. Journal of Physical Chemistry C, 2014, 118, 29473-29481.	1.5	7
533	DFT Elucidation of Materials Properties. Accounts of Chemical Research, 2014, 47, 3207-3207.	7.6	7
534	Electronic Structure at the Interface between Rubrene and Perylenediimide Single Crystals: Impact of Interfacial Charge Transfer and its Modulation. Advanced Materials Interfaces, 2014, 1, 1400362.	1.9	7
535	Theoretical study on molecular packing and electronic structure of bi-1,3,4-oxadiazole derivatives. RSC Advances, 2014, 4, 51942-51949.	1.7	7
536	Mixed-stack architecture and solvatomorphism of trimeric perfluoro-ortho-phenylene mercury complexes with dithieno $[3,2-b:2\hat{a}\in^2,3\hat{a}\in^2-d]$ thiophene. Journal of Molecular Structure, 2015, 1100, 506-512.	1.8	7
537	Conjugated heterocyclic copolymers: Correlation between electronic structures and conducting properties. Synthetic Metals, 1990, 36, 195-207.	2.1	6
538	The impact of symmetric modes on intramolecular electron transfer: A semi-classical approach. Chemical Physics, 2006, 326, 107-114.	0.9	6
539	Synthesis, X-ray, spectroelectrochemical, and theoretical studies of a tricyanovinyl-capped quaterthiophene: A correlation of semiconductor performance with physical properties. Chemical Physics Letters, 2006, 425, 251-256.	1.2	6
540	Theoretical description of the geometric and electronic structures of organic-organic interfaces in organic solar cells: a brief review. Science China Chemistry, 2014, 57, 1330-1339.	4.2	6

#	Article	IF	CITATIONS
541	Charge Transport in Crystalline Organic Semiconductors. Materials and Energy, 2016, , 193-230.	2.5	6
542	Topological Transformation of Ï€â€Conjugated Molecules Reduces Resistance to Crystallization. Angewandte Chemie, 2017, 129, 9446-9449.	1.6	6
543	Mechanism of Formation of Benzotrithiophene-Based Covalent Organic Framework Monolayers on Coinage-Metal Surfaces: C–C Coupling Selectivity and Monomer–Metal Interactions. Chemistry of Materials, 2020, 32, 10688-10696.	3.2	6
544	Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects. , 2021, 3, 398-405.		6
545	Energy transfer processes in hyperfluorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 4629-4636.	2.7	6
546	Charge-Transfer and Energy-Transfer Processes in ?-Conjugated Oligomers and Polymers: A Molecular Picture. ChemInform, 2005, 36, no.	0.1	5
547	A Novel Mitigation Mechanism for Photoâ€Induced Trapping in an Anthradithiophene Derivative Using Additives. Advanced Electronic Materials, 2020, 6, 2000250.	2.6	5
548	Surface organization of hyperbranched polymer molecules, as studied by atomic force microscopy. Macromolecular Symposia, 2001, 167, 243-256.	0.4	4
549	Photorefractive properties and applications of polymer composites and fully functionalized polymethacrylates. Materials Science and Engineering C, 2001, 18, 25-35.	3.8	4
550	Correction to "Thermal Narrowing of the Electronic Bandwidths in Organic Molecular Semiconductors: Impact of the Crystal Thermal Expansion― Journal of Physical Chemistry Letters, 2013, 4, 950-950.	2.1	4
551	Dithieno[3,2-a:2′,3′-c]phenazine-based chemical probe for anions: a spectroscopic study of binding. RSC Advances, 2015, 5, 43303-43311.	1.7	4
552	Theoretical investigation of phenylene-based materials in their pristine and doped state. Optical Materials, 1999, 12, 307-310.	1.7	3
553	Electrodeposition of mixed adherent thin films of poly(ethyl acrylate) and polyacrylonitrile onto nickel. E-Polymers, 2004, 4, .	1.3	3
554	Impact of position of electron withdrawing cyano groups on nonlinear optical properties of centrosymmetric donorâ∈⊮â€acceptor system. International Journal of Quantum Chemistry, 2017, 117, e25441.	1.0	3
555	Bulk Heterojunction Solar Cells: Insight into Ternary Blends from a Characterization of the Intermolecular Packing and Electronic Properties in the Corresponding Binary Blends. Advanced Theory and Simulations, 2020, 3, 2000049.	1.3	3
556	Healing contact. Nature Materials, 2013, 12, 1084-1085.	13.3	2
557	Impact of Functionalized Polystyrenes as the Electron Injection Layer on Gold and Aluminum Surfaces: A Combined Theoretical and Experimental Study. Israel Journal of Chemistry, 2014, 54, 779-788.	1.0	2
558	Work function reduction by a redox-active organometallic sandwich complex. Organic Electronics, 2016, 37, 263-270.	1.4	2

#	Article	IF	CITATIONS
559	Organic self-assembled monolayers on superconducting NbSe ₂ : interfacial electronic structure and energetics*. Journal of Physics Condensed Matter, 2022, 34, 294003.	0.7	2
560	Influence of the Chemical Structure on the Luminescence Properties of Organic Dye Molecules. Materials Research Society Symposia Proceedings, 1999, 598, 339.	0.1	1
561	Colorless Molecular Dopants for Low-Operating-Voltage Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2005, 428, 17-32.	0.4	1
562	Understanding the Relationships Among Molecular Structure, Excited-State Properties, and Polarizabilities of π-Conjugated Chromophores. Materials and Energy, 2016, , 393-419.	2.5	1
563	Investigation of Exciton Coupling in Oligothiophenes by Circular Dichroism Spectroscopy. , 1998, 10, 1343.		1
564	Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells (Adv. Energy Mater. 2/2022). Advanced Energy Materials, 2022, 12, 2270004.	10.2	1
565	Theoretical Investigation of the Spinâ€dependent Exciton Formation Rates in Polymeric Lightâ€emitting Diodes. Journal of the Chinese Chemical Society, 2003, 50, 691-702.	0.8	0
566	Charge-Transport Properties of para-Hexaphenylene Nanofibers. , 2008, , .		0
567	Recent advances in printable OLED materials and devices. , 2012, , .		0
568	Organic Thinâ€Film Transistors: Vibrationâ€Assisted Crystallization Improves Organic/Dielectric Interface in Organic Thinâ€Film Transistors (Adv. Mater. 48/2013). Advanced Materials, 2013, 25, 7054-7054.	11.1	0
569	Theoretical investigation of the degradation mechanisms in host and guest molecules used in OLED active layers. Proceedings of SPIE, 2014, , .	0.8	0
570	Recent progress in organic electronics and photonics: A perspective on the future of organic devices. , 2015, , .		0
571	DFT 101 and Applications to <i>i;i€</i> i>-Conjugated Systems. Materials and Energy, 2016, , 19-52.	2.5	0
572	Small polarons in 2D perovskites. , 2017, , .		0
573	Dear Materials Community. Materials Horizons, 2020, 7, 1933-1934.	6.4	0
574	A Theoretical Insight into Organic Interfaces in Electro-Optic Devices. , 2001, , .		0
575	Photophysics of even-parity excited states in polymeric semiconductors., 2002,,.		0
576	Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces. Highlights in Theoretical Chemistry, 2014, , 217-224.	0.0	0

#	Article	lF	CITATIONS
577	Editorial for the special issue of <i>Materials Horizons</i> in honor of Seth Marder. Materials Horizons, 2022, 9, 15-16.	6.4	O
578	Resolving atomic-scale interactions in non-fullerene acceptor organic solar cells by high-field NMR crystallography. , 0, , .		0