
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10904746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nature Communications, 2022, 13, 536.	5.8	14
2	Metabolic Messengers: endocannabinoids. Nature Metabolism, 2022, 4, 848-855.	5.1	10
3	l-Serine links metabolism with neurotransmission. Progress in Neurobiology, 2021, 197, 101896.	2.8	44
4	Abrogating mitochondrial ROS in neurons or astrocytes reveals cell-specific impact on mouse behaviour. Redox Biology, 2021, 41, 101917.	3.9	8
5	Opa1 relies on cristae preservation and ATP synthase to curtail reactive oxygen species accumulation in mitochondria. Redox Biology, 2021, 41, 101944.	3.9	34
6	Preconditioning-Activated AKT Controls Neuronal Tolerance to Ischemia through the MDM2–p53 Pathway. International Journal of Molecular Sciences, 2021, 22, 7275.	1.8	6
7	Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metabolism, 2021, 33, 1546-1564.	7.2	143
8	Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Molecular Medicine, 2021, 13, e13742.	3.3	28
9	Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. Science Advances, 2020, 6, .	4.7	11
10	Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature, 2020, 583, 603-608.	13.7	169
11	An ex vivo Approach to Assess Mitochondrial ROS by Flow Cytometry in AAV-tagged Astrocytes in Adult Mice. Bio-protocol, 2020, 10, e3550.	0.2	3
12	Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Scientific Reports, 2019, 9, 11670.	1.6	44
13	Does APC/C ^{CDH1} control the human brain size?. Journal of Neurochemistry, 2019, 151, 8-10.	2.1	1
14	Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nature Metabolism, 2019, 1, 201-211.	5.1	119
15	Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology, 2019, 146, 19-27.	2.0	40
16	NF-κB Activity Initiates Human ESC-Derived Neural Progenitor Cell Differentiation by Inducing a Metabolic Maturation Program. Stem Cell Reports, 2018, 10, 1766-1781.	2.3	23
17	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	5.0	120
18	Current technical approaches to brain energy metabolism. Glia, 2018, 66, 1138-1159.	2.5	40

#	Article	IF	CITATIONS
19	Single-Nucleotide Polymorphism <i>309T>G</i> in the <i>MDM2</i> Promoter Determines Functional Outcome After Stroke. Stroke, 2018, 49, 2437-2444.	1.0	16
20	Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biology, 2018, 19, 52-61.	3.9	35
21	Mitochondrial Complex I Activity is Conditioned by Supercomplex I–III2–IV Assembly in Brain Cells: Relevance for Parkinson's Disease. Neurochemical Research, 2017, 42, 1676-1682.	1.6	16
22	Mitochondrial respiratory chain disorganization in Parkinson's disease-relevant PINK1 and DJ1 mutants. Neurochemistry International, 2017, 109, 101-105.	1.9	43
23	Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism. Cell Death and Differentiation, 2017, 24, 144-154.	5.0	35
24	Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovascular Diabetology, 2016, 15, 82.	2.7	84
25	Mitochondrial control of cell bioenergetics in Parkinson's disease. Free Radical Biology and Medicine, 2016, 100, 123-137.	1.3	74
26	Bioenergetics and redox adaptations of astrocytes to neuronal activity. Journal of Neurochemistry, 2016, 139, 115-125.	2.1	192
27	αâ€Ketoglutarate dehydrogenase complex moonlighting: ROS signalling added to the list. Journal of Neurochemistry, 2016, 139, 689-690.	2.1	6
28	Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13063-13068.	3.3	300
29	NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming. Cell Reports, 2016, 14, 1883-1891.	2.9	132
30	Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons. Scientific Reports, 2015, 5, 18180.	1.6	31
31	Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Frontiers in Aging Neuroscience, 2015, 7, 89.	1.7	43
32	Regulation of Bcl-xL-ATP Synthase Interaction by Mitochondrial Cyclin B1-Cyclin-Dependent Kinase-1 Determines Neuronal Survival. Journal of Neuroscience, 2015, 35, 9287-9301.	1.7	44
33	DJ1 represses glycolysis and cell proliferation by transcriptionally up-regulating <i>pink1</i> . Biochemical Journal, 2015, 467, 303-310.	1.7	43
34	TIGAR's promiscuity. Biochemical Journal, 2014, 458, e5-e7.	1.7	8
35	The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. Journal of Neurochemistry, 2014, 129, 663-671.	2.1	59
36	PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nature Communications, 2014, 5, 4514.	5.8	93

#	Article	IF	CITATIONS
37	RNA Interference as a Tool to Selectively Down-Modulate Protein Function. Neuromethods, 2014, , 177-194.	0.2	0
38	Underestimation of the Pentose–Phosphate Pathway in Intact Primary Neurons as Revealed by Metabolic Flux Analysis. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1843-1845.	2.4	37
39	Brain energy metabolism in glutamate-receptor activation and excitotoxicity: Role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochemistry International, 2013, 62, 750-756.	1.9	68
40	Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3. Biochemical Journal, 2013, 452, e7-e9.	1.7	22
41	Glutathione and γ-glutamylcysteine in the antioxidant and survival functions of mitochondria. Biochemical Society Transactions, 2013, 41, 106-110.	1.6	35
42	Î ³ -Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nature Communications, 2012, 3, 718.	5.8	132
43	Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochemical Journal, 2012, 443, 3-11.	1.7	210
44	The human <i>Tp53 Arg72Pro</i> polymorphism explains different functional prognosis in stroke. Journal of Experimental Medicine, 2011, 208, 429-437.	4.2	57
45	The pentoseâ€phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life, 2010, 62, 14-18.	1.5	57
46	Glycolysis: a bioenergetic or a survival pathway?. Trends in Biochemical Sciences, 2010, 35, 145-149.	3.7	297
47	Bilirubin selectively inhibits cytochrome <i>c</i> oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. Journal of Neurochemistry, 2010, 112, 56-65.	2.1	63
48	Persistent mitochondrial damage by nitric oxide and its derivatives: neuropathological implications. Frontiers in Neuroenergetics, 2010, 2, 1.	5.3	94
49	E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 738-741.	3.3	150
50	The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nature Cell Biology, 2009, 11, 747-752.	4.6	671
51	Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implicationsâ~†. Advanced Drug Delivery Reviews, 2009, 61, 1299-1315.	6.6	93
52	Expression of glucose transporter GLUT3 by endotoxin in cultured rat astrocytes: the role of nitric oxide. Journal of Neurochemistry, 2008, 79, 17-24.	2.1	36
53	Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO Journal, 2008, 27, 2736-2745.	3.5	115
54	Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 789-793.	0.5	90

#	Article	IF	CITATIONS
55	Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/Akt neuroprotective signaling pathway. Journal of Neurochemistry, 2007, 102, 194-205.	2.1	76
56	Modulation of Astroglial Energy Metabolism by Nitric Oxide. Antioxidants and Redox Signaling, 2006, 8, 955-965.	2.5	40
57	Nitric oxide, cell bioenergetics and neurodegeneration. Journal of Neurochemistry, 2006, 97, 1676-1689.	2.1	506
58	Increased mitochondrial respiration maintains the mitochondrial membrane potential and promotes survival of cerebellar neurons in an endogenous model of glutamate receptor activation. Journal of Neurochemistry, 2005, 92, 183-190.	2.1	29
59	Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biology and Medicine, 2005, 39, 1291-1304.	1.3	207
60	Inhibition of mitochondrial respiration by nitric oxide: Its role in glucose metabolism and neuroprotection. Journal of Neuroscience Research, 2005, 79, 166-171.	1.3	40
61	Knockdown of Glutamate-Cysteine Ligase by Small Hairpin RNA Reveals That Both Catalytic and Modulatory Subunits Are Essential for the Survival of Primary Neurons. Journal of Biological Chemistry, 2005, 280, 38992-39001.	1.6	70
62	Cdh1/Hct1-APC Is Essential for the Survival of Postmitotic Neurons. Journal of Neuroscience, 2005, 25, 8115-8121.	1.7	135
63	Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology, 2004, 6, 45-51.	4.6	416
64	Regulation of glucose metabolism by nitrosative stress in neural cells. Molecular Aspects of Medicine, 2004, 25, 61-73.	2.7	34
65	Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5′-AMP-activated protein kinase. Biochemical Journal, 2004, 384, 629-636.	1.7	73
66	Peroxisome Proliferator-activated Receptor γ Thiazolidinedione Agonists Increase Glucose Metabolism in Astrocytes. Journal of Biological Chemistry, 2003, 278, 5828-5836.	1.6	154
67	Peroxynitrite Protects Neurons against Nitric Oxide-mediated Apoptosis. Journal of Biological Chemistry, 2003, 278, 864-874.	1.6	147
68	Peroxynitrite Stimulates l-Arginine Transport Systemy+ in Glial Cells. Journal of Biological Chemistry, 2002, 277, 29753-29759.	1.6	21
69	Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochemistry International, 2002, 40, 469-474.	1.9	71
70	Nitric oxide accounts for an increased glycolytic rate in activated astrocytes through a glycogenolysis-independent mechanism. Brain Research, 2002, 945, 131-134.	1.1	7
71	D-Glucose Prevents Glutathione Oxidation and Mitochondrial Damage After Glutamate Receptor Stimulation in Rat Cortical Primary Neurons. Journal of Neurochemistry, 2002, 75, 1618-1624.	2.1	69
72	Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. Journal of Neurochemistry, 2002, 81, 207-217.	2.1	211

#	Article	IF	CITATIONS
73	Depletion of glutathione up-regulates mitochondrial complex I expression in glial cells. Journal of Neurochemistry, 2001, 76, 1593-1596.	2.1	22
74	A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. Journal of Neurochemistry, 2001, 77, 676-690.	2.1	147
75	Induction of Glucose-6-Phosphate Dehydrogenase by Lipopolysaccharide Contributes to Preventing Nitric Oxide-Mediated Glutathione Depletion in Cultured Rat Astrocytes. Journal of Neurochemistry, 2001, 72, 1750-1758.	2.1	79
76	Nitric oxide-mediated mitochondrial impairment in neural cells: a role for glucose metabolism in neuroprotection. Progress in Brain Research, 2001, 132, 441-454.	0.9	5
77	Nitric oxide mediates glutamate-induced mitochondrial depolarization in rat cortical neurons. Brain Research, 1999, 816, 580-586.	1.1	47
78	The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Letters, 1999, 446, 261-263.	1.3	84
79	Nitric oxide mediates brain mitochondrial maturation immediately after birth. FEBS Letters, 1999, 452, 290-294.	1.3	13
80	Nitric oxide, mitochondria and neurological disease. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1410, 215-228.	0.5	415
81	Roles of nitric oxide in brain hypoxia-ischemia. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 415-436.	0.5	269
82	Nitric oxide mediates brain mitochondrial damage during perinatal anoxia. Brain Research, 1998, 787, 117-122.	1.1	39
83	Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Research, 1998, 790, 209-216.	1.1	137
84	Evaluation of the efficacy of potential therapeutic agents at protecting against nitric oxide synthase-mediated mitochondrial damage in activated astrocytes. Brain Research Protocols, 1997, 1, 258-262.	1.7	14
85	Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Progress in Neurobiology, 1997, 52, 261-281.	2.8	156
86	Nitric Oxideâ€Mediated Mitochondrial Damage in the Brain: Mechanisms and Implications for Neurodegenerative Diseases. Journal of Neurochemistry, 1997, 68, 2227-2240.	2.1	458
87	Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage. Brain Research, 1996, 716, 118-122.	1.1	97
88	Glutathione depletion is accompanied by increased neuronal nitric oxide synthase activity. Neurochemical Research, 1996, 21, 35-39.	1.6	40
89	Nitric oxide-mediated mitochondrial damage: A potential neuroprotective role for glutathione. Free Radical Biology and Medicine, 1996, 21, 995-1001.	1.3	240
90	Induction of Nitric Oxide Synthase Inhibits Gap Junction Permeability in Cultured Rat Astrocytes. Journal of Neurochemistry, 1996, 66, 2091-2099.	2.1	87

#	Article	IF	CITATIONS
91	Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neuroscience Letters, 1995, 193, 201-204.	1.0	204
92	Effect of Peroxynitrite on the Mitochondrial Respiratory Chain: Differential Susceptibility of Neurones and Astrocytes in Primary Culture. Journal of Neurochemistry, 1995, 64, 1965-1972.	2.1	446