
Scott G Filler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090449/publications.pdf Version: 2024-02-01

SCOTT C FULED

#	Article	IF	CITATIONS
1	Clinical Practice Guidelines for the Management Candidiasis: 2009 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2009, 48, 503-535.	2.9	2,644
2	Guidelines for Treatment of Candidiasis. Clinical Infectious Diseases, 2004, 38, 161-189.	2.9	1,371
3	Daptomycin versus Standard Therapy for Bacteremia and Endocarditis Caused byStaphylococcus aureus. New England Journal of Medicine, 2006, 355, 653-665.	13.9	1,347
4	Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. Journal of Experimental Medicine, 2009, 206, 299-311.	4.2	878
5	Practice Guidelines for the Treatment of Candidiasis. Clinical Infectious Diseases, 2000, 30, 662-678.	2.9	833
6	Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells. PLoS Biology, 2007, 5, e64.	2.6	492
7	Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathogens, 2006, 2, e63.	2.1	443
8	International Conference for the Development of a Consensus on the Management and Prevention of Severe Candidal Infections. Clinical Infectious Diseases, 1997, 25, 43-59.	2.9	438
9	Combination Polyeneâ€Caspofungin Treatment of Rhinoâ€Orbitalâ€Cerebral Mucormycosis. Clinical Infectious Diseases, 2008, 47, 364-371.	2.9	424
10	Evidence implicating phospholipase as a virulence factor of Candida albicans. Infection and Immunity, 1995, 63, 1993-1998.	1.0	313
11	Complementary Adhesin Function in C. albicans Biofilm Formation. Current Biology, 2008, 18, 1017-1024.	1.8	293
12	The Case for Adopting the "Species Complex―Nomenclature for the Etiologic Agents of Cryptococcosis. MSphere, 2017, 2, .	1.3	274
13	Candida albicans Als3, a Multifunctional Adhesin and Invasin. Eukaryotic Cell, 2011, 10, 168-173.	3.4	263
14	The Hyphal-Associated Adhesin and Invasin Als3 of Candida albicans Mediates Iron Acquisition from Host Ferritin. PLoS Pathogens, 2008, 4, e1000217.	2.1	259
15	Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.	2.1	256
16	Functional and Structural Diversity in the Als Protein Family of Candida albicans. Journal of Biological Chemistry, 2004, 279, 30480-30489.	1.6	254
17	The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. Journal of Clinical Investigation, 2010, 120, 1914-1924.	3.9	240
18	Fungal Invasion of Normally Non-Phagocytic Host Cells. PLoS Pathogens, 2006, 2, e129.	2.1	237

#	Article	IF	CITATIONS
19	Current Treatment Strategies for Disseminated Candidiasis. Clinical Infectious Diseases, 2006, 42, 244-251.	2.9	227
20	Phase I Evaluation of the Safety and Pharmacokinetics of Murine-Derived Anticryptococcal Antibody 18B7 in Subjects with Treated Cryptococcal Meningitis. Antimicrobial Agents and Chemotherapy, 2005, 49, 952-958.	1.4	212
21	Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology (United Kingdom), 2015, 161, 168-181.	0.7	209
22	Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Molecular Microbiology, 2002, 44, 61-72.	1.2	203
23	Interactions of <i>Candida albicans</i> with epithelial cells. Cellular Microbiology, 2010, 12, 273-282.	1.1	198
24	Mechanism of Fluconazole Resistance in <i>Candida krusei</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 2645-2649.	1.4	196
25	Mice with Disseminated Candidiasis Die of Progressive Sepsis. Journal of Infectious Diseases, 2005, 192, 336-343.	1.9	196
26	Gliotoxin Production in <i>Aspergillus fumigatus</i> Contributes to Hostâ€Specific Differences in Virulence. Journal of Infectious Diseases, 2008, 197, 479-486.	1.9	196
27	<i>Candida albicans</i> Mds3p, a Conserved Regulator of pH Responses and Virulence Identified Through Insertional Mutagenesis. Genetics, 2002, 162, 1573-1581.	1.2	189
28	CotH3 mediates fungal invasion of host cells during mucormycosis. Journal of Clinical Investigation, 2014, 124, 237-250.	3.9	185
29	Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cellular Microbiology, 2004, 7, 499-510.	1.1	182
30	Mouse model of oropharyngeal candidiasis. Nature Protocols, 2012, 7, 637-642.	5.5	181
31	Role of Hyphal Formation in Interactions of Candida albicans with Endothelial Cells. Infection and Immunity, 2000, 68, 3485-3490.	1.0	178
32	Calcineurin Is Essential for Candida albicans Survival in Serum and Virulence. Eukaryotic Cell, 2003, 2, 422-430.	3.4	177
33	NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine, 2012, 30, 7594-7600.	1.7	177
34	Host Cell Invasion and Virulence Mediated by Candida albicans Ssa1. PLoS Pathogens, 2010, 6, e1001181.	2.1	170
35	The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathogens, 2015, 11, e1005187.	2.1	167
36	Efficacy of the Anti andidarAls3pâ€N or rAls1pâ€N Vaccines against Disseminated and Mucosal Candidiasis. Journal of Infectious Diseases, 2006, 194, 256-260.	1.9	162

#	Article	IF	CITATIONS
37	CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nature Immunology, 2019, 20, 559-570.	7.0	162
38	Acetylsalicylic Acid Reduces Vegetation Bacterial Density, Hematogenous Bacterial Dissemination, and Frequency of Embolic Events in Experimental <i>Staphylococcus aureus</i> Endocarditis Through Antiplatelet and Antibacterial Effects. Circulation, 1999, 99, 2791-2797.	1.6	157
39	Expression of the <i>Candida albicans</i> Gene <i>ALS1</i> in <i>Saccharomyces cerevisiae</i> Induces Adherence to Endothelial and Epithelial Cells. Infection and Immunity, 1998, 66, 1783-1786.	1.0	154
40	EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by <i>Candida albicans</i> during oropharyngeal infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14194-14199.	3.3	152
41	The pH-Responsive PacC Transcription Factor of Aspergillus fumigatus Governs Epithelial Entry and Tissue Invasion during Pulmonary Aspergillosis. PLoS Pathogens, 2014, 10, e1004413.	2.1	151
42	IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host and Microbe, 2016, 20, 606-617.	5.1	148
43	<i>Candida albicans</i> transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cellular Microbiology, 2008, 10, 2180-2196.	1.1	144
44	A Phase II Randomized Trial of Amphotericin B Alone or Combined with Fluconazole in the Treatment of HIVâ€Associated Cryptococcal Meningitis. Clinical Infectious Diseases, 2009, 48, 1775-1783.	2.9	141
45	Role of Trehalose Biosynthesis in <i>Aspergillus fumigatus</i> Development, Stress Response, and Virulence. Infection and Immunity, 2010, 78, 3007-3018.	1.0	136
46	EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans. Nature Microbiology, 2018, 3, 53-61.	5.9	136
47	Novel Inhalational Murine Model of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2004, 48, 1908-1911.	1.4	135
48	In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Molecular Microbiology, 2007, 63, 1606-1628.	1.2	134
49	A Fungal Immunotherapeutic Vaccine (NDV-3A) for Treatment of Recurrent Vulvovaginal Candidiasis—A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Infectious Diseases, 2018, 66, 1928-1936.	2.9	134
50	The Antifungal Vaccine Derived from the Recombinant N Terminus of Als3p Protects Mice against the Bacterium <i>Staphylococcus aureus</i> . Infection and Immunity, 2008, 76, 4574-4580.	1.0	133
51	Phase II, Randomized, Double-Blind, Multicenter Study Comparing the Safety and Pharmacokinetics of Tefibazumab to Placebo for Treatment of Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 2006, 50, 2751-2755.	1.4	129
52	<i>Candida albicans</i> internalization by host cells is mediated by a clathrin-dependent mechanism. Cellular Microbiology, 2009, 11, 1179-1189.	1.1	128
53	<i>Aspergillus fumigatus</i> MedA governs adherence, host cell interactions and virulence. Cellular Microbiology, 2010, 12, 473-488.	1.1	124
54	Requirement for Candida albicans Sun41 in Biofilm Formation and Virulence. Eukaryotic Cell, 2007, 6, 2046-2055.	3.4	118

#	Article	IF	CITATIONS
55	Reduced Virulence of HWP1 -Deficient Mutants of Candida albicans and Their Interactions with Host Cells. Infection and Immunity, 2000, 68, 1997-2002.	1.0	114
56	A Forkhead Transcription Factor Is Important for True Hyphal as well as Yeast Morphogenesis in Candida albicans. Eukaryotic Cell, 2002, 1, 787-798.	3.4	114
57	TheAspergillus fumigatusStuA Protein Governs the Up-Regulation of a Discrete Transcriptional Program during the Acquisition of Developmental Competence. Molecular Biology of the Cell, 2005, 16, 5866-5879.	0.9	114
58	Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity. Blood, 2004, 103, 2143-2149.	0.6	108
59	Cryptococcal Immune Reconstitution Inflammatory Syndrome after Antiretroviral Therapy in AIDS Patients with Cryptococcal Meningitis: A Prospective Multicenter Study. Clinical Infectious Diseases, 2009, 49, 931-934.	2.9	103
60	Divergent Targets of Candida albicans Biofilm Regulator Bcr1 <i>In Vitro</i> and <i>In Vivo</i> . Eukaryotic Cell, 2012, 11, 896-904.	3.4	103
61	An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nature Communications, 2016, 7, 12218.	5.8	103
62	Overlapping and Distinct Roles of Aspergillus fumigatus UDP-glucose 4-Epimerases in Galactose Metabolism and the Synthesis of Galactose-containing Cell Wall Polysaccharides. Journal of Biological Chemistry, 2014, 289, 1243-1256.	1.6	102
63	N-cadherin Mediates Endocytosis of Candida albicans by Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 10455-10461.	1.6	100
64	New Model of Oropharyngeal Candidiasis in Mice. Antimicrobial Agents and Chemotherapy, 2001, 45, 3195-3197.	1.4	99
65	Tumor Necrosis Factor Inhibition and Invasive Fungal Infections. Clinical Infectious Diseases, 2005, 41, S208-S212.	2.9	99
66	Relationship between Candida albicans Virulence during Experimental Hematogenously Disseminated Infection and Endothelial Cell Damage In Vitro. Infection and Immunity, 2004, 72, 598-601.	1.0	98
67	Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis. Eukaryotic Cell, 2011, 10, 803-819.	3.4	97
68	Activation and Alliance of Regulatory Pathways in C. albicans during Mammalian Infection. PLoS Biology, 2015, 13, e1002076.	2.6	97
69	Genetic Basis for Differential Activities of Fluconazole and Voriconazole against Candida krusei. Antimicrobial Agents and Chemotherapy, 2003, 47, 1213-1219.	1.4	93
70	Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation. MBio, 2016, 7, e00252-16.	1.8	91
71	Genome Mining of a Prenylated and Immunosuppressive Polyketide from Pathogenic Fungi. Organic Letters, 2013, 15, 780-783.	2.4	89
72	Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7124-7129.	3.3	88

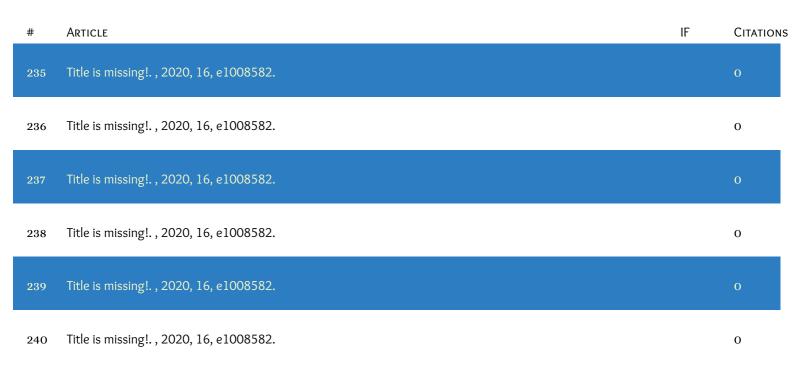
#	Article	IF	CITATIONS
73	Oropharyngeal Candidiasis: Fungal Invasion and Epithelial Cell Responses. PLoS Pathogens, 2017, 13, e1006056.	2.1	87
74	Cryptococcus gattii VGIII Isolates Causing Infections in HIV/AIDS Patients in Southern California: Identification of the Local Environmental Source as Arboreal. PLoS Pathogens, 2014, 10, e1004285.	2.1	85
75	Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science, 2021, 371, .	6.0	84
76	Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis. Journal of Clinical Investigation, 2016, 126, 2280-2294.	3.9	84
77	Candida–host cell receptor–ligand interactions. Current Opinion in Microbiology, 2006, 9, 333-339.	2.3	82
78	New signaling pathways govern the host response to <i>C. albicans</i> infection in various niches. Genome Research, 2015, 25, 679-689.	2.4	82
79	Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in <i>Candida albicans</i> . Genetics, 2018, 209, 725-741.	1.2	82
80	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	1.4	81
81	Mechanisms of the Proinflammatory Response of Endothelial Cells to Candida albicans Infection. Infection and Immunity, 2000, 68, 1134-1141.	1.0	79
82	NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine, 2013, 31, 5549-5556.	1.7	79
83	Functional analysis of theCandida albicans ALS1 gene product. Yeast, 2004, 21, 473-482.	0.8	77
84	Candida albicans Ecm33p Is Important for Normal Cell Wall Architecture and Interactions with Host Cells. Eukaryotic Cell, 2006, 5, 140-147.	3.4	77
85	Candida albicans CUG Mistranslation Is a Mechanism To Create Cell Surface Variation. MBio, 2013, 4, .	1.8	77
86	Regulatory Role of Glycerol in Candida albicans Biofilm Formation. MBio, 2013, 4, e00637-12.	1.8	77
87	Current Strategies for Treating Invasive Candidiasis: Emphasis on Infections in Nonneutropenic Patients. Clinical Infectious Diseases, 1992, 14, S106-S113.	2.9	76
88	Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genetics and Biology, 2010, 47, 107-116.	0.9	75
89	Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nature Microbiology, 2017, 2, 16211.	5.9	75
90	Vaccination with Recombinant N-Terminal Domain of Als1p Improves Survival during Murine Disseminated Candidiasis by Enhancing Cell-Mediated, Not Humoral, Immunity. Infection and Immunity, 2005, 73, 999-1005.	1.0	74

#	Article	IF	CITATIONS
91	Mechanisms of Candida albicans Trafficking to the Brain. PLoS Pathogens, 2011, 7, e1002305.	2.1	74
92	A Randomized Study of the Use of Fluconazole in Continuous versus Episodic Therapy in Patients with Advanced HIV Infection and a History of Oropharyngeal Candidiasis: AIDS Clinical Trials Group Study 323/Mycoses Study Group Study 40. Clinical Infectious Diseases, 2005, 41, 1473-1480.	2.9	72
93	Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. Journal of Infectious Diseases, 2019, 220, 1477-1488.	1.9	72
94	Adherence to and damage of endothelial cells by Cryptococcus neoformans in vitro: role of the capsule. Infection and Immunity, 1995, 63, 4368-4374.	1.0	72
95	Contribution of Candida albicans ALS1 to the Pathogenesis of Experimental Oropharyngeal Candidiasis. Infection and Immunity, 2002, 70, 5256-5258.	1.0	71
96	The Anti- Candida albicans Vaccine Composed of the Recombinant N Terminus of Als1p Reduces Fungal Burden and Improves Survival in Both Immunocompetent and Immunocompromised Mice. Infection and Immunity, 2005, 73, 6191-6193.	1.0	69
97	An RNA Transport System in Candida albicans Regulates Hyphal Morphology and Invasive Growth. PLoS Genetics, 2009, 5, e1000664.	1.5	69
98	GRP78 and Integrins Play Different Roles in Host Cell Invasion during Mucormycosis. MBio, 2020, 11, .	1.8	69
99	Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host–pathogen interaction. Journal of Proteomics, 2015, 127, 340-351.	1.2	68
100	Comparison of three methodologies for the determination of pulmonary fungal burden in experimental murine aspergillosis. Clinical Microbiology and Infection, 2006, 12, 376-380.	2.8	66
101	Synergistic Regulation of Hyphal Elongation by Hypoxia, CO2, and Nutrient Conditions Controls the Virulence of Candida albicans. Cell Host and Microbe, 2013, 14, 499-509.	5.1	65
102	Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrobial Agents and Chemotherapy, 1997, 41, 535-539.	1.4	64
103	Protective immunity in recurrent <i>Staphylococcus aureus</i> infection reflects localized immune signatures and macrophage-conferred memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11111-E11119.	3.3	63
104	Parenchymal Organ, and Not Splenic, Immunity Correlates with Host Survival during Disseminated Candidiasis. Infection and Immunity, 2003, 71, 5756-5764.	1.0	62
105	Enantioselectivity of inhibition of cytochrome P450 3A4 (CYP3A4) by ketoconazole: Testosterone and methadone as substrates. Chirality, 2004, 16, 79-85.	1.3	62
106	Severe Candidal Infections in Neutropenic Patients. Clinical Infectious Diseases, 1993, 17, S457-S467.	2.9	61
107	Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5555-63.	3.3	61
108	The Yak1 Kinase Is Involved in the Initiation and Maintenance of Hyphal Growth in <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 2251-2266.	0.9	59

#	Article	IF	CITATIONS
109	AtrR Is an Essential Determinant of Azole Resistance in Aspergillus fumigatus. MBio, 2019, 10, .	1.8	59
110	Nonredundant Roles of Interleukin-17A (IL-17A) and IL-22 in Murine Host Defense against Cutaneous and Hematogenous Infection Due to Methicillin-Resistant Staphylococcus aureus. Infection and Immunity, 2015, 83, 4427-4437.	1.0	58
111	Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Science Advances, 2019, 5, eaaw1327.	4.7	57
112	<i>Aspergillus fumigatus</i> Stimulates Leukocyte Adhesion Molecules and Cytokine Production by Endothelial Cells In Vitro and during Invasive Pulmonary Disease. Infection and Immunity, 2008, 76, 3429-3438.	1.0	56
113	Host Cell Invasion by Medically Important Fungi. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019687.	2.9	56
114	Secreted Aspartyl Proteinases and Interactions of <i>Candida albicans</i> with Human Endothelial Cells. Infection and Immunity, 1998, 66, 3003-3005.	1.0	56
115	Transcriptional Responses of <i>Candida albicans</i> to Epithelial and Endothelial Cells. Eukaryotic Cell, 2009, 8, 1498-1510.	3.4	54
116	Efficacy of Liposomal Amphotericin B and Posaconazole in Intratracheal Models of Murine Mucormycosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 3340-3347.	1.4	54
117	Fosmanogepix (APX001) Is Effective in the Treatment of Pulmonary Murine Mucormycosis Due to Rhizopus arrhizus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	54
118	Aspergillus fumigatus AcuM regulates both iron acquisition and gluconeogenesis. Molecular Microbiology, 2010, 78, 1038-1054.	1.2	53
119	Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of the Pathogenic Fungus <i>Aspergillus fumigatus</i> . MBio, 2018, 9, .	1.8	53
120	Mucoricin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nature Microbiology, 2021, 6, 313-326.	5.9	53
121	Standardization of an Experimental Murine Model of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 3501-3503.	1.4	51
122	Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cellular Microbiology, 2007, 9, 233-245.	1.1	50
123	The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio, 2017, 8, .	1.8	50
124	In Vivo Analysis of Aspergillus fumigatus Developmental Gene Expression Determined by Real-Time Reverse Transcription-PCR. Infection and Immunity, 2008, 76, 3632-3639.	1.0	48
125	EphA2 Is a Neutrophil Receptor for Candida albicans that Stimulates Antifungal Activity during Oropharyngeal Infection. Cell Reports, 2019, 28, 423-433.e5.	2.9	47
126	In vitro endothelial cell damage is positively correlated with enhanced virulence and poor vancomycin responsiveness in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Cellular Microbiology, 2011, 13, 1530-1541.	1.1	46

#	Article	IF	CITATIONS
127	The <i>Aspergillus fumigatus</i> transcription factor Ace2 governs pigment production, conidiation and virulence. Molecular Microbiology, 2009, 72, 155-169.	1.2	45
128	Pharmacokinetics of Posaconazole Within Epithelial Cells and Fungi: Insights Into Potential Mechanisms of Action During Treatment and Prophylaxis. Journal of Infectious Diseases, 2013, 208, 1717-1728.	1.9	45
129	Inhibition of EGFR Signaling Protects from Mucormycosis. MBio, 2018, 9, .	1.8	45
130	Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathogens, 2021, 17, e1009221.	2.1	45
131	Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathogens, 2017, 13, e1006205.	2.1	44
132	The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathogens, 2018, 14, e1007056.	2.1	43
133	Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype. PLoS Genetics, 2019, 15, e1008137.	1.5	43
134	Transcriptome Profile of the Vascular Endothelial Cell Response to <i>Candida albicans</i> . Journal of Infectious Diseases, 2008, 198, 193-202.	1.9	39
135	<i>SSD1</i> Is Integral to Host Defense Peptide Resistance in <i>Candida albicans</i> . Eukaryotic Cell, 2008, 7, 1318-1327.	3.4	38
136	Role of Endothelial Cell Septin 7 in the Endocytosis of Candida albicans. MBio, 2013, 4, e00542-13.	1.8	38
137	Innate Immune Memory Contributes to Host Defense against Recurrent Skin and Skin Structure Infections Caused by Methicillin-Resistant Staphylococcus aureus. Infection and Immunity, 2017, 85, .	1.0	38
138	Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality. PLoS Genetics, 2020, 16, e1008582.	1.5	38
139	SR-Like RNA-Binding Protein Slr1 Affects Candida albicans Filamentation and Virulence. Infection and Immunity, 2013, 81, 1267-1276.	1.0	37
140	A possible role for fumagillin in cellular damage during host infection by <i>Aspergillus fumigatus</i> . Virulence, 2018, 9, 1548-1561.	1.8	37
141	Endothelial Cell Injury Caused by <i>Candida albicans</i> Is Dependent on Iron. Infection and Immunity, 1998, 66, 191-196.	1.0	37
142	Glycerophosphocholine Utilization by Candida albicans. Journal of Biological Chemistry, 2013, 288, 33939-33952.	1.6	35
143	Investigation of the Function of Candida albicans Als3 by Heterologous Expression in Candida glabrata. Infection and Immunity, 2013, 81, 2528-2535.	1.0	35
144	Unanticipated Heterogeneity in Growth Rate and Virulence among Candida albicans AAF1 Null Mutants. Infection and Immunity, 1999, 67, 3193-3198.	1.0	35

#	Article	IF	CITATIONS
145	Using Bayesian modelling to investigate factors governing antibiotic-induced Candida albicans colonization of the GI tract. Scientific Reports, 2015, 5, 8131.	1.6	34
146	Endocytosis ofCandida albicansby vascular endothelial cells is associated with tyrosine phosphorylation of specific host cell proteins. Cellular Microbiology, 2002, 4, 805-812.	1.1	33
147	Cloning and Characterization of <i>CAD1/AAF1</i> , a Gene from <i>Candida albicans</i> That Induces Adherence to Endothelial Cells after Expression in <i>Saccharomyces cerevisiae</i> . Infection and Immunity, 1998, 66, 2078-2084.	1.0	33
148	Role of Retrograde Trafficking in Stress Response, Host Cell Interactions, and Virulence of Candida albicans. Eukaryotic Cell, 2014, 13, 279-287.	3.4	32
149	Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nature Chemical Biology, 2018, 14, 135-141.	3.9	32
150	Role of Aspergillus fumigatus DvrA in Host Cell Interactions and Virulence. Eukaryotic Cell, 2010, 9, 1432-1440.	3.4	31
151	CX ₃ CR1 Is Dispensable for Control of Mucosal Candida albicans Infections in Mice and Humans. Infection and Immunity, 2015, 83, 958-965.	1.0	31
152	Candida albicansStimulates Local Expression of Leukocyte Adhesion Molecules and Cytokines In Vivo. Journal of Infectious Diseases, 2002, 186, 389-396.	1.9	30
153	Polarized response of endothelial cells to invasion by <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2009, 11, 170-182.	1.1	29
154	Divergent Targets of Aspergillus fumigatus AcuK and AcuM Transcription Factors during Growth <i>In Vitro</i> versus Invasive Disease. Infection and Immunity, 2015, 83, 923-933.	1.0	29
155	Candida albicans White-Opaque Switching Influences Virulence but Not Mating during Oropharyngeal Candidiasis. Infection and Immunity, 2018, 86, .	1.0	29
156	Determining Aspergillus fumigatus transcription factor expression and function during invasion of the mammalian lung. PLoS Pathogens, 2021, 17, e1009235.	2.1	28
157	Human Anti-Als3p Antibodies Are Surrogate Markers of NDV-3A Vaccine Efficacy Against Recurrent Vulvovaginal Candidiasis. Frontiers in Immunology, 2018, 9, 1349.	2.2	27
158	Divergent Responses of Different Endothelial Cell Types to Infection with Candida albicans and Staphylococcus aureus. PLoS ONE, 2012, 7, e39633.	1.1	27
159	Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans. PLoS ONE, 2017, 12, e0187721.	1.1	24
160	Candida albicans adherence to endothelial cells. Microvascular Research, 1992, 43, 218-226.	1.1	21
161	Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus. Frontiers in Immunology, 2014, 5, 463.	2.2	21
162	Genetic variation of DNA methyltransferase-3A contributes to protection against persistent MRSA bacteremia in patients. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20087-20096.	3.3	20


#	Article	IF	CITATIONS
163	Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans. Eukaryotic Cell, 2013, 12, 411-419.	3.4	19
164	Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence. PLoS Pathogens, 2022, 18, e1010192.	2.1	19
165	Comparative transcriptomics of Aspergillus fumigatus strains upon exposure to human airway epithelial cells. Microbial Genomics, 2018, 4, .	1.0	18
166	Insights from human studies into the host defense against candidiasis. Cytokine, 2012, 58, 129-132.	1.4	17
167	Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses. Scientific Reports, 2018, 8, 13377.	1.6	17
168	Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca ²⁺ -ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of Aspergillus fumigatus. MBio, 2020, 11, .	1.8	17
169	Mucormycosis and Entomophthoramycosis (Zygomycosis). , 2011, , 265-280.		16
170	A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses. BMC Bioinformatics, 2015, 16, 31.	1.2	16
171	Candida albicans Cannot Acquire Sufficient Ethanolamine from the Host To Support Virulence in the Absence of <i>De Novo</i> Phosphatidylethanolamine Synthesis. Infection and Immunity, 2018, 86, .	1.0	15
172	Functional convergence of <i>gliP</i> and <i>aspf1</i> in <i>Aspergillus fumigatus</i> pathogenicity. Virulence, 2018, 9, 1062-1073.	1.8	14
173	Eukaryotic Translation Initiation Factor-6 Enhances Histamine and IL-2 Production in Mast Cells. Journal of Immunology, 2001, 166, 3606-3611.	0.4	13
174	Pharmacokinetics of Murine p75-Fc Fusion Protein and MP6-XT22 Anti-Murine TNF-α mAb in Mice. Journal of Investigative Dermatology Symposium Proceedings, 2007, 12, 52-56.	0.8	13
175	Genome Sequence for Candida albicans Clinical Oral Isolate 529L. Microbiology Resource Announcements, 2019, 8, .	0.3	13
176	The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection. MBio, 2021, 12, e0271621.	1.8	13
177	Can host receptors for fungi be targeted for treatment of fungal infections?. Trends in Microbiology, 2013, 21, 389-396.	3.5	12
178	Saccharomyces cerevisiae: an Emerging and Model Pathogenic Fungus. , 0, , 245-259.		12
179	Virulence Mechanisms of Coccidioides. , 0, , 363-391.		12
180	Efficacy of Ambruticin Analogs in a Murine Model of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 3464-3466.	1.4	11

#	Article	IF	CITATIONS
181	Systematic Genetic Interaction Analysis Identifies a Transcription Factor Circuit Required for Oropharyngeal Candidiasis. MBio, 2022, 13, e0344721.	1.8	11
182	Toward a Molecular Understanding of <i>Candida albicans</i> Virulence. , 0, , 305-P1.		10
183	Virulence Factors in Black Molds with Emphasis on Melanin, Chitin, and Wangiella as a Molecularly Tractable Model. , 0, , 407-428.		10
184	Candida albicans Hypha Formation and Virulence. , 0, , 45-P2.		10
185	Different tumor necrosis factor $\hat{I}\pm$ antagonists have different effects on host susceptibility to disseminated and oropharyngeal candidiasis in mice. Virulence, 2014, 5, 625-629.	1.8	9
186	Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLoS Genetics, 2020, 16, e1008881.	1.5	9
187	Fungal Molecular Pathogenesis: What Can It Do and Why Do We Need It?. , 0, , 1-11.		9
188	Aspergillus endocarditis diagnosed by fungemia plus serum antigen testing. Medical Mycology Case Reports, 2019, 23, 1-3.	0.7	8
189	Identification of Candida glabrata Transcriptional Regulators That Govern Stress Resistance and Virulence. Infection and Immunity, 2021, 89, .	1.0	8
190	Zygomycetes as Agents of Infectious Disease in Humans. , 0, , 429-440.		8
191	Molecular Principles of Antifungal Drug Resistance. , 0, , 197-212.		7
192	Molecular Determinants of Virulence in Aspergillus fumigatus. , 0, , 333-345.		7
193	Invasive pulmonary mucormycosis and aspergillosis in a patient with decompensated hepatic cirrhosis. Medical Mycology Case Reports, 2018, 21, 12-15.	0.7	6
194	Cryptococcus neoformans : a Sugar-Coated Killer. , 0, , 279-303.		6
195	Candida: What Should Clinicians and Scientists Be Talking About?. , 0, , 1-8.		6
196	Response to Comments on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections― Science, 2021, 373, eabi8835.	6.0	5
197	Endothelial Cell Stimulation by Candida albicans. Methods in Molecular Biology, 2009, 470, 313-326.	0.4	5

#	Article	IF	CITATIONS
199	Evolution of Human-Pathogenic Fungi: Phylogenies and Species. , 0, , 113-P1.		5
200	Plasma Membrane Phosphatidylinositol-4-Phosphate Is Not Necessary for Candida albicans Viability yet Is Key for Cell Wall Integrity and Systemic Infection. MBio, 2022, 13, e0387321.	1.8	5
201	Function and Regulation of Adhesin Gene Families in <i>Saccharomyces cerevisiae, Candida albicans</i> , and <i>Candida glabrata</i> . , 0, , 163-175.		4
202	Signaling Pathways in the Dimorphic Human Fungal Pathogen <i>Penicillium marneffei</i> . , 0, , 441-454.		4
203	Innate and Acquired Cellular Immunity to Fungi. , 0, , 471-486.		4
204	Fungal Biofilms: Agents of Disease and Drug Resistance. , 0, , 177-185.		3
205	Molecular Basis of Fungal Adherence to Endothelial and Epithelial Cells. , 0, , 187-196.		3
206	Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathogens, 2022, 18, e1010681.	2.1	3
207	In vitro models of hematogenously disseminated candidiasis. Virulence, 2014, 5, 240-242.	1.8	2
208	Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts. , 0, , 143-162.		2
209	Molecular Determinants of Histoplasma capsulatum Pathogenesis. , 0, , 321-331.		2
210	Intracellular Pathogenesis of Histoplasma capsulatum. , 0, , 527-536.		2
211	Use of the Iron-Responsive <i>RBT5</i> Promoter for Regulated Expression in Candida albicans. MSphere, 2022, 7, .	1.3	2
212	Gene Expression Profiling of Infecting Microbes Using a Digital Bar-coding Platform. Journal of Visualized Experiments, 2016, , e53460.	0.2	1
213	Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?. , 0, , 271-278.		1
214	Acquired Antibody-Mediated Immunity to Fungi. , 0, , 487-503.		1
215	Site-Specific Mucosal Immunity to Fungi: Lessons Learned from Candida albicans Applied to Other Fungi. , 0, , 505-526.		1
216	Fungal Interactions with Leukocytes. , 0, , 555-563.		1

- .

#	Article	IF	CITATIONS
217	Fungal Vaccine Development. , 0, , 565-581.		1
218	Future of Functional Genomics of Histoplasma capsulatum. , 0, , 611-625.		1
219	Functional Genomic Approaches to Fungal Pathogenesis, Drug Target Validation, and Antifungal Drug Discovery. , 0, , 627-642.		1
220	The Mating-Type Locus and Mating of Candida albicans and Candida glabrata. , 0, , 89-112.		1
221	Studying Fungal Virulence by Using Genomics. , 0, , 589-P1.		1
222	Interactions of Fungi with Endothelial Cells. , 2005, , 403-419.		0
223	Editorial overview. Current Opinion in Microbiology, 2011, 14, 373-374.	2.3	Ο
224	Identification of Host for Using Whole Cell Affinity Purification. Methods in Molecular Biology, 2021, 2260, 27-36.	0.4	0
225	Heterologous Hosts and the Evolution and Study of Fungal Pathogenesis. , 0, , 213-225.		0
226	Interactions of <i>Aspergillus</i> with the Mucosa. , 0, , 239-245.		0
227	Postgenomic Strategies for Genetic Analysis: Insight from Saccharomyces cerevisiae and Candida albicans. , 0, , 35-P1.		0
228	Amoeba and Slime Mold: Hosts of Virulence Evolution. , 0, , 227-234.		0
229	<i>Aspergillus nidulans</i> : a Model for Elucidation of <i>Aspergillus fumigatus</i> Secondary Metabolism. , 0, , 235-243.		0
230	The Conversion from Classical Studies in Fungal Pathogenesis to the Molecular Era. , 0, , 49-P1.		0
231	Establishment of Cell Identity in Pathogenic Fungi. , 0, , 133-141.		Ο
232	EphA2 is a Neutrophil Receptor for Candida Albicans that Stimulates Antifungal Activity During Oropharyngeal Infection. SSRN Electronic Journal, 0, , .	0.4	0
233	Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics. Microbial Genomics, 2020, 6, .	1.0	0
234	Fungal dysbiosis and survival after allo-HCT. Nature Microbiology, 2021, 6, 1473-1474.	5.9	0

