
James P Mcallister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10903949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructural Periventricular White Matter Injury in Post-hemorrhagic Ventricular Dilatation. Neurology, 2022, 98, .	1.1	8
2	Acquired hydrocephalus is associated with neuroinflammation, progenitor loss, and cellular changes in the subventricular zone and periventricular white matter. Fluids and Barriers of the CNS, 2022, 19, 17.	5.0	16
3	Cerebrospinal fluid biomarkers of neuroinflammation in children with hydrocephalus and shunt malfunction. Fluids and Barriers of the CNS, 2021, 18, 4.	5.0	14
4	A multicenter retrospective study of heterogeneous tissue aggregates obstructing ventricular catheters explanted from patients with hydrocephalus. Fluids and Barriers of the CNS, 2021, 18, 33.	5.0	10
5	Analysis of Nâ€acetyl cysteine modified polydimethylsiloxane shunt for improved treatment of hydrocephalus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1177-1187.	3.4	1
6	A novel model of acquired hydrocephalus for evaluation of neurosurgical treatments. Fluids and Barriers of the CNS, 2021, 18, 49.	5.0	9
7	Genetics and Molecular Pathogenesis of Human Hydrocephalus. Neurology India, 2021, 69, 268.	0.4	10
8	Biochemical profile of human infant cerebrospinal fluid in intraventricular hemorrhage and post-hemorrhagic hydrocephalus of prematurity. Fluids and Barriers of the CNS, 2021, 18, 62.	5.0	6
9	Characterization of a multicenter pediatric-hydrocephalus shunt biobank. Fluids and Barriers of the CNS, 2020, 17, 45.	5.0	12
10	Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone. Fluids and Barriers of the CNS, 2020, 17, 46.	5.0	17
11	Neural stem cell therapy of foetal onset hydrocephalus using the HTx rat as experimental model. Cell and Tissue Research, 2020, 381, 141-161.	2.9	10
12	Experimental Hydrocephalus. , 2019, , 37-51.		1
13	Feasibility of fast brain diffusion MRI to quantify white matter injury in pediatric hydrocephalus. Journal of Neurosurgery: Pediatrics, 2019, 24, 461-468.	1.3	10
14	Experimental Hydrocephalus. , 2018, , 1-18.		0
15	Blood Exposure Causes Ventricular Zone Disruption and Glial Activation In Vitro. Journal of Neuropathology and Experimental Neurology, 2018, 77, 803-813.	1.7	41
16	Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids and Barriers of the CNS, 2018, 15, 11.	5.0	35
17	Lumbar Cerebrospinal Fluid Biomarkers of Posthemorrhagic Hydrocephalus of Prematurity: Amyloid Precursor Protein, Soluble Amyloid Precursor Protein α, and L1 Cell Adhesion Molecule. Neurosurgery, 2017, 80, 82-90.	1.1	24
18	Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage. Journal of Neuropathology and Experimental Neurology, 2017, 76, 358-375.	1.7	83

JAMES P MCALLISTER

#	Article	IF	CITATIONS
19	Cerebrospinal Fluid Biomarkers of Pediatric Hydrocephalus. Pediatric Neurosurgery, 2017, 52, 426-435.	0.7	19
20	Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids and Barriers of the CNS, 2017, 14, 35.	5.0	55
21	Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS ONE, 2017, 12, e0172353.	2.5	21
22	A Novel Experimental Animal Model of Adult Chronic Hydrocephalus. Neurosurgery, 2016, 79, 746-756.	1.1	17
23	The value of early and comprehensive diagnoses in a human fetus with hydrocephalus and progressive obliteration of the aqueduct of Sylvius: Case Report. BMC Neurology, 2016, 16, 45.	1.8	25
24	Cell Junction Pathology of Neural Stem Cells Is Associated With Ventricular Zone Disruption, Hydrocephalus, and Abnormal Neurogenesis. Journal of Neuropathology and Experimental Neurology, 2015, 74, 653-671.	1.7	72
25	Cerebrospinal Fluid Levels of Amyloid Precursor Protein Are Associated with Ventricular Size in Post-Hemorrhagic Hydrocephalus of Prematurity. PLoS ONE, 2015, 10, e0115045.	2.5	27
26	An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes― Journal of Neurosurgery, 2015, 123, 1427-1438.	1.6	87
27	Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging. Child's Nervous System, 2014, 30, 1651-1661.	1.1	24
28	Kaolinâ€induced ventriculomegaly at weaning produces longâ€ŧerm learning, memory, and motor deficits in rats. International Journal of Developmental Neuroscience, 2014, 35, 7-15.	1.6	25
29	Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell and Tissue Research, 2013, 352, 707-725.	2.9	25
30	Neocortical Capillary Flow Pulsatility is Not Elevated in Experimental Communicating Hydrocephalus. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 318-329.	4.3	17
31	What We Should Know About the Cellular and Tissue Response Causing Catheter Obstruction in the Treatment of Hydrocephalus. Neurosurgery, 2012, 70, 1589-1602.	1.1	74
32	Effect of delayed intermittent ventricular drainage on ventriculomegaly and neurological deficits in experimental neonatal hydrocephalus. Child's Nervous System, 2012, 28, 1849-1861.	1.1	12
33	Pathophysiology of congenital and neonatal hydrocephalus. Seminars in Fetal and Neonatal Medicine, 2012, 17, 285-294.	2.3	148
34	A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biological Research, 2012, 45, 231-241.	3.4	78
35	Diffusion tensor imaging of white matter injury in a rat model of infantile hydrocephalus. Child's Nervous System, 2012, 28, 47-54.	1.1	28
36	Does drainage hole size influence adhesion on ventricular catheters?. Child's Nervous System, 2011, 27, 1221-1232.	1.1	42

#	Article	IF	CITATIONS
37	Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes. Child's Nervous System, 2011, 27, 2067-2076.	1.1	31
38	Effects of surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an <i>in vitro</i> model of central nervous system catheter obstruction. Journal of Biomedical Materials Research - Part A, 2011, 97A, 433-440.	4.0	27
39	Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and <i>N</i> â€acetylâ€ <scp>L</scp> â€cysteine. Journal of Biomedical Materials Research - Part A, 2011, 98A, 425-433.	4.0	28
40	Experimental Hydrocephalus. , 2011, , 2002-2008.		6
41	Diffusion tensor imaging correlates with cytopathology in a rat model of neonatal hydrocephalus. Cerebrospinal Fluid Research, 2010, 7, 19.	0.5	36
42	Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Research, 2010, 7, 7.	0.5	38
43	Mechanical contributions to astrocyte adhesion using a novel in vitro model of catheter obstruction. Experimental Neurology, 2010, 222, 204-210.	4.1	41
44	Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Experimental Neurology, 2010, 226, 110-119.	4.1	73
45	Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus. Cerebrospinal Fluid Research, 2009, 6, 16.	0.5	47
46	Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus. Cerebrospinal Fluid Research, 2009, 6, 4.	0.5	17
47	Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Experimental Neurology, 2008, 211, 351-361.	4.1	51
48	Priorities for hydrocephalus research: report from a National Institutes of Health–sponsored workshop. Journal of Neurosurgery: Pediatrics, 2007, 107, 345-357.	1.3	48
49	The effect of self-assembled layers on the release behavior of rifampicin-loaded silicone. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 687-700.	3.5	2
50	Effects of congenital hydrocephalus on the hypothalamic gonadotrophin-releasing hormone system. Neurosurgical Focus, 2007, 22, 1-10.	2.3	27
51	Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Research, 2007, 4, 5.	0.5	91
52	Effect of surface modification of siliconeon Staphylococcus epidermidis adhesion and colonization. Journal of Biomedical Materials Research - Part A, 2007, 80A, 885-894.	4.0	33
53	Stability of and inflammatory response to silicon coated with a fluoroalkyl self-assembled monolayer in the central nervous system. Journal of Biomedical Materials Research - Part A, 2007, 81A, 363-372.	4.0	15
54	Evaluation of polymer and self-assembled monolayer-coated silicone surfaces to reduce neural cell growth. Biomaterials, 2006, 27, 1519-1526.	11.4	32

JAMES P MCALLISTER

#	Article	IF	CITATIONS
55	Immobilization of polysaccharides on a fluorinated silicon surface. Colloids and Surfaces B: Biointerfaces, 2006, 47, 57-63.	5.0	36
56	Effect of surface proteins on Staphylococcus Epidermidis adhesion and colonization on silicone. Colloids and Surfaces B: Biointerfaces, 2006, 51, 16-24.	5.0	28
57	Effect of cast molded rifampicin/silicone onstaphylococcus epidermidis biofilm formation. Journal of Biomedical Materials Research - Part A, 2006, 76A, 580-588.	4.0	14
58	What we don't (but should) know about hydrocephalus. Journal of Neurosurgery: Pediatrics, 2006, 104, 157-159.	1.3	35
59	Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathologica, 2005, 109, 237-246.	7.7	124
60	Effects of hydrocephalus and ventriculoperitoneal shunt therapy on afferent and efferent connections in the feline sensorimotor cortex. Journal of Neurosurgery: Pediatrics, 2004, 101, 196-210.	1.3	26
61	Long-term neuroprotection induced by regional brain cooling with saline infusion into ischemic territory in rats: a behavioral analysis. Neurological Research, 2004, 26, 677-683.	1.3	25
62	Regional brain cooling induced by vascular saline infusion into ischemic territory reduces brain inflammation in stroke. Acta Neuropathologica, 2004, 107, 227-234.	7.7	48
63	Local Saline Infusion into Ischemic Territory Induces Regional Brain Cooling and Neuroprotection in Rats with Transient Middle Cerebral Artery Occlusion. Neurosurgery, 2004, 54, 956-965.	1.1	86
64	Reduced inflammatory mediator expression by pre-reperfusion infusion into ischemic territory in rats: a real-time polymerase chain reaction analysis. Neuroscience Letters, 2003, 353, 173-176.	2.1	37
65	Axonal damage associated with enlargement of ventricles during hydrocephalus: A silver impregnation study. Neurological Research, 2001, 23, 581-587.	1.3	44
66	Decreased c-fos expression in experimental neonatal hydrocephalus: evidence for reduced neuronal activation. Neurosurgical Focus, 1999, 7, E14.	2.3	1
67	Neonatal Hydrocephalus. Neurosurgery Clinics of North America, 1998, 9, 73-93.	1.7	113
68	Gliosis and ganglion cell death in the developing cat retina during hydrocephalus and after decompression. Developmental Brain Research, 1992, 70, 47-52.	1.7	12
69	Improvement of Cortical Morphology in Infantile Hydrocephalic Animals after Ventriculoperitoneal Shunt Placement. Neurosurgery, 1992, 31, 1085-1096.	1.1	49
70	Improvement of Cortical Morphology in Infantile Hydrocephalic Animals after Ventriculoperitoneal Shunt Placement. Neurosurgery, 1992, 31, 1085-1096.	1.1	64
71	Progression of Experimental Infantile Hydrocephalus and Effects of Ventriculoperitoneal Shunts: An Analysis Correlating Magnetic Resonance Imaging with Gross Morphology. Neurosurgery, 1991, 29, 329-340.	1.1	64
72	Cytological and Cytoarchitectural Changes in the Feline Cerebral Cortex during Experimental Infantile Hydrocephalus. Pediatric Neurosurgery, 1990, 16, 139-155.	0.7	56

JAMES P MCALLISTER

#	ARTICLE	IF	CITATIONS
73	A technique for placing ventriculoperitoneal shunts in a neonatal model of hydrocephalus. Journal of Neuroscience Methods, 1989, 29, 201-206.	2.5	12
74	Minimal connectivity between six month neostriatal transplants and the host substantia nigra. Brain Research, 1989, 476, 345-350.	2.2	20
75	Effects of Hydrocephalus and Surgical Decompression on Cortical Norepinephrine Levels in Neonatal Cats. Neurosurgery, 1989, 24, 43-52.	1.1	55
76	Monoamine Alterations during Experimental Hydrocephalus in Neonatal Rats. Neurosurgery, 1988, 22, 86-91.	1.1	30
77	Tritiated Thymidine Identification of Embryonic Neostriatal Transplants. Annals of the New York Academy of Sciences, 1987, 495, 745-748.	3.8	8
78	Transplants of Neostriatal Primordia Contain Acetylcholinesterase-positive Neurons. Annals of the New York Academy of Sciences, 1987, 495, 749-752.	3.8	4
79	Minimal connectivity between neostriatal transplants and the host brain. Brain Research, 1987, 425, 34-44.	2.2	37
80	Quantitative analysis of dendrites from transplanted neostriatal neurons. Brain Research, 1987, 414, 149-152.	2.2	17
81	Identification of acetylcholinesterase-reactive neurons and neuropil in neostriatal transplants. Journal of Comparative Neurology, 1987, 259, 1-12.	1.6	49
82	Neuronal effects of experimentally induced hydrocephalus in newborn rats. Journal of Neurosurgery, 1985, 63, 776-783.	1.6	82