Xiaoming Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10903410/publications.pdf

Version: 2024-02-01

186265 214800 6,400 47 28 47 h-index citations g-index papers 47 47 47 9423 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Porous calcium–manganese oxide/carbon nanotube microspheres as efficient oxygen reduction catalysts for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2021, 8, 2052-2060.	6.0	10
2	A nanostructured nickel/carbon matrix as an efficient oxygen evolution reaction electrocatalyst for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 1873-1880.	6.0	4
3	Re-nucleation and Etching of Graphene During the Cooling Stage of Chemical Vapor Deposition. Journal of Electronic Materials, 2019, 48, 1740-1745.	2.2	2
4	Facile One-Pot Synthesis of CoFe Alloy Nanoparticles Decorated N-Doped Carbon for High-Performance Rechargeable Zinc–Air Battery Stacks. ACS Sustainable Chemistry and Engineering, 2018, 6, 7743-7751.	6.7	41
5	Improving the Electrochemical Oxygen Reduction Activity of Manganese Oxide Nanosheets with Sulfurizationâ€Induced Nanopores. ChemCatChem, 2018, 10, 422-429.	3.7	23
6	Effects of carbon-based impurities on graphene growth. Physical Chemistry Chemical Physics, 2018, 20, 15419-15423.	2.8	11
7	Thermal-assisted direct transfer of graphene onto flexible substrates. Materials Letters, 2018, 229, 252-255.	2.6	4
8	Mechanism of SiOx particles formation during CVD graphene growth on Cu substrates. Carbon, 2018, 139, 989-998.	10.3	21
9	Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. Journal of Power Sources, 2018, 400, 566-571.	7.8	83
10	Sheetâ€onâ€Sheet Hierarchical Nanostructured C@MnO ₂ for Znâ€Air and Znâ€MnO ₂ Batteries. ChemNanoMat, 2017, 3, 401-405.	2.8	24
11	A Robust Hybrid Zn-Battery with Ultralong Cycle Life. Nano Letters, 2017, 17, 156-163.	9.1	138
12	A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon, 2017, 111, 641-650.	10.3	304
13	Ni/NiO _x -decorated carbon nanofibers with enhanced oxygen evolution activity for rechargeable zinc–air batteries. Materials Chemistry Frontiers, 2017, 1, 677-682.	5.9	29
14	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	10.0	86
15	Progress in development of flexible metal–air batteries. Functional Materials Letters, 2016, 09, 1630001.	1.2	41
16	Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catalysis, 2016, 6, 7865-7871.	11.2	51
17	Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. Journal of Power Sources, 2016, 332, 330-336.	7.8	129
18	Copperâ€Modified Gold Nanoparticles as Highly Selective Catalysts for Glycerol Electroâ€Oxidation in Alkaline Solution. ChemCatChem, 2016, 8, 3272-3278.	3.7	28

#	Article	IF	CITATIONS
19	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	5 . 6	109
20	Edge morphology evolution of graphene domains during chemical vapor deposition cooling revealed through hydrogen etching. Nanoscale, 2016, 8, 4145-4150.	5 . 6	16
21	Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon, 2016, 96, 237-242.	10.3	43
22	Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets. Advanced Science, 2015, 2, 1500120.	11.2	163
23	Manganese Oxide Catalyst Grown on Carbon Paper as an Air Cathode for Highâ€Performance Rechargeable Zinc–Air Batteries. ChemPlusChem, 2015, 80, 1341-1346.	2.8	65
24	A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting. Chemistry - A European Journal, 2015, 21, 18062-18067.	3.3	228
25	Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1520-1526.	14.9	325
26	Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 2015, 5, 4643-4667.	11.2	1,022
27	Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co _{0.55} Mn _{0.45}) _{0.99} O _{3â^δ} nanorod/graphene hybrid in alkaline media. Nanoscale, 2015, 7, 9046-9054.	5. 6	86
28	Pd Nanoparticles on Carbon Nitride–Graphene for the Selective Electro-Oxidation of Glycerol in Alkaline Solution. ACS Catalysis, 2015, 5, 3174-3180.	11.2	80
29	Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries. Chemical Communications, 2015, 51, 8841-8844.	4.1	104
30	Nanostructured Perovskite LaCo _{1-x} Mn _x O ₃ as Bifunctional Catalysts for Rechargeable Metal–Air Batteries. Journal of Molecular and Engineering Materials, 2015, 03, 1540006.	1.8	5
31	Co ₃ O ₄ nanoparticles grown on N-doped Vulcan carbon as a scalable bifunctional electrocatalyst for rechargeable zinc–air batteries. RSC Advances, 2015, 5, 75773-75780.	3.6	39
32	Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene. Applied Catalysis B: Environmental, 2015, 166-167, 25-31.	20.2	21
33	Co ₃ O ₄ nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale, 2015, 7, 1830-1838.	5 . 6	226
34	Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Applied Catalysis B: Environmental, 2014, 154-155, 232-237.	20.2	183
35	A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries. Journal of the Electrochemical Society, 2014, 161, A2080-A2086.	2.9	121
36	Dual-Phase Spinel MnCo ₂ O ₄ and Spinel MnCo ₂ O ₄ /Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12684-12691.	8.0	322

#	Article	IF	CITATIONS
37	Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 2624-2629.	30.8	1,164
38	Sr1â^'Ca MoO3â€"Gd0.2Ce0.8O1.9 as the anode in solid oxide fuel cells: Effects of Mo precipitation. Journal of Alloys and Compounds, 2014, 587, 326-331.	5.5	16
39	Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale, 2013, 5, 7768.	5.6	426
40	Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery. Electrochimica Acta, 2013, 114, 598-604.	5.2	134
41	Ultrathin MoS ₂ Nanoplates with Rich Active Sites as Highly Efficient Catalyst for Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12794-12798.	8.0	392
42	H2 and CH4 oxidation on Gd0.2Ce0.8O1.9 infiltrated SrMoO3–yttria-stabilized zirconia anode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 18349-18356.	7.1	16
43	Robust solid oxide cells for alternate power generation and carbon conversion. RSC Advances, 2011, 1, 715.	3.6	28
44	Double layer capacitance of anode/solid-electrolyte interfaces. Physical Chemistry Chemical Physics, 2011, 13, 15134.	2.8	22
45	Double layer structure in solid oxide fuel cell anode/electrolyte interfaces: A Monte Carlo study. Electrochemistry Communications, 2011, 13, 792-795.	4.7	4
46	Three phase boundaries and electrochemically active zones of lanthanum strontium vanadateâ€"yttria-stabilized zirconia anodes in solid oxide fuel cells. Electrochimica Acta, 2011, 56, 5947-5953.	5.2	9
47	Impedance Identification of Lanthanum Strontium Vanadate Anode in H2-H2O-He Atmosphere. ECS Transactions, 2009, 25, 2249-2258.	0.5	2