Kenichiro Itami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109033/publications.pdf

Version: 2024-02-01

259 papers

25,532 citations

84 h-index

4960

⁷⁹⁵⁰
149
g-index

293 all docs 293 docs citations

times ranked

293

14229 citing authors

#	Article	IF	Citations
1	C–H Acyloxylation of Polycyclic Aromatic Hydrocarbons. Organic Letters, 2022, 24, 602-607.	4.6	11
2	Synthesis of octagon-containing molecular nanocarbons. Chemical Science, 2022, 13, 1848-1868.	7.4	39
3	Identification of stomatal-regulating molecules from de novo arylamine collection through aromatic C–H amination. Scientific Reports, 2022, 12, 949.	3.3	5
4	Infinitene: A Helically Twisted Figure-Eight [12]Circulene Topoisomer. Journal of the American Chemical Society, 2022, 144, 862-871.	13.7	85
5	Synthesis of a Möbius carbon nanobelt. , 2022, 1, 535-541.		53
6	Perfluorocycloparaphenylenes. Nature Communications, 2022, 13, .	12.8	16
7	Statistical Verification of Anomaly in Chiral Angle Distribution of Air-Suspended Carbon Nanotubes. Nano Letters, 2022, 22, 5818-5824.	9.1	3
8	Exciton Spatial Dynamics and Self-Trapping in Carbon Nanocages. Journal of Physical Chemistry Letters, 2021, 12, 224-231.	4.6	3
9	Synthesis and properties of helically-folded poly(arylenediethynylene)s. Polymer Chemistry, 2021, 12, 3290-3298.	3.9	O
10	Photopharmacological Manipulation of Mammalian CRY1 for Regulation of the Circadian Clock. Journal of the American Chemical Society, 2021, 143, 2078-2087.	13.7	31
11	Double-Helix Supramolecular Nanofibers Assembled from Negatively Curved Nanographenes. Journal of the American Chemical Society, 2021, 143, 5465-5469.	13.7	66
12	Reversible modulation of circadian time with chronophotopharmacology. Nature Communications, 2021, 12, 3164.	12.8	35
13	Diversity-oriented synthesis of nanographenes enabled by dearomative annulative π-extension. Nature Communications, 2021, 12, 3940.	12.8	35
14	Photoredox-Catalyzed Benzylic Esterification via Radical-Polar Crossover. Organic Letters, 2021, 23, 5113-5117.	4.6	23
15	Construction of Heptagonâ€Containing Molecular Nanocarbons. Angewandte Chemie, 2021, 133, 23700-23724.	2.0	31
16	Chemical Synthesis of Carbon Nanorings and Nanobelts. Accounts of Materials Research, 2021, 2, 681-691.	11.7	71
17	Construction of Heptagonâ€Containing Molecular Nanocarbons. Angewandte Chemie - International Edition, 2021, 60, 23508-23532.	13.8	118
18	Stepwise Generation of Monoâ€, Diâ€, and Triplyâ€Reduced Warped Nanographenes: Chargeâ€Dependent Aromaticity, Surface Nonequivalence, Swing Distortion, and Metal Binding Sites. Angewandte Chemie, 2021, 133, 25649-25657.	2.0	3

#	Article	IF	CITATIONS
19	Stepwise Generation of Monoâ€, Diâ€, and Triplyâ€Reduced Warped Nanographenes: Chargeâ€Dependent Aromaticity, Surface Nonequivalence, Swing Distortion, and Metal Binding Sites. Angewandte Chemie - International Edition, 2021, 60, 25445-25453.	13.8	12
20	Synthesis of a zigzag carbon nanobelt. Nature Chemistry, 2021, 13, 255-259.	13.6	96
21	Reductive stability evaluation of 6-azopurine photoswitches for the regulation of CKIα activity and circadian rhythms. Organic and Biomolecular Chemistry, 2021, 19, 2312-2321.	2.8	15
22	Molecular Nanocarbons Add New Dimensions to Organic Chemistry. Journal of Organic Chemistry, 2021, 86, 14239-14241.	3.2	2
23	Molecular Nanocarbons Add New Dimensions to Organic Chemistry. Organic Letters, 2021, 23, 8119-8121.	4.6	0
24	Synthesis and Structure of [9]Cycloparaphenylene Catenane: An All-Benzene Catenane Consisting of Small Rings. Organic Letters, 2020, 22, 1067-1070.	4.6	24
25	Step-Growth Annulative π-Extension Polymerization for Synthesis of Cove-Type Graphene Nanoribbons. Journal of the American Chemical Society, 2020, 142, 1686-1691.	13.7	23
26	A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications. Journal of Organic Chemistry, 2020, 85, 4-33.	3.2	101
27	Development of potent inhibitors for strigolactone receptor DWARF 14. Chemical Communications, 2020, 56, 14917-14919.	4.1	3
28	A theoretical study on the strain energy of helicene-containing carbon nanobelts. Chemical Communications, 2020, 56, 15044-15047.	4.1	12
29	"Janus―efficacy of CX-5011: CK2 inhibition and methuosis induction by independent mechanisms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118807.	4.1	14
30	Creation of negatively curved polyaromatics enabled by annulative coupling that forms an eight-membered ring. Nature Catalysis, 2020, 3, 710-718.	34.4	36
31	A N-terminally deleted form of the CK2α' catalytic subunit is sufficient to support cell viability. Biochemical and Biophysical Research Communications, 2020, 531, 409-415.	2.1	9
32	Small Molecules Modulating Mammalian Biological Clocks: Exciting New Opportunities for Synthetic Chemistry. CheM, 2020, 6, 2186-2198.	11.7	2
33	Frontispiece: Synthetic Strategies of Carbon Nanobelts and Related Belt‧haped Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2020, 26, .	3.3	0
34	\ddot{l}_f -Bond Hydroboration of Cyclopropanes. Journal of the American Chemical Society, 2020, 142, 11306-11313.	13.7	16
35	Synthesis of cycloiptycenes from carbon nanobelts. Chemical Science, 2020, 11, 6775-6779.	7.4	20
36	Synthetic Strategies of Carbon Nanobelts and Related Beltâ€Shaped Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2020, 26, 14791-14801.	3.3	72

#	Article	IF	Citations
37	Molecular Nanocarbon Science: Present and Future. Nano Letters, 2020, 20, 4718-4720.	9.1	32
38	Six-fold C–H borylation of hexa- <i>peri</i> hexabenzocoronene. Beilstein Journal of Organic Chemistry, 2020, 16, 391-397.	2.2	18
39	Selective Transformation of Strychnine and 1,2-Disubstituted Benzenes by C–H Borylation. CheM, 2020, 6, 985-993.	11.7	24
40	Isoform-selective regulation of mammalian cryptochromes. Nature Chemical Biology, 2020, 16, 676-685.	8.0	61
41	Recent Advances in C–H Activation for the Synthesis of π-Extended Materials. , 2020, 2, 951-974.		91
42	A Nonalternant Aromatic Belt: Methylene-Bridged [6]Cycloparaphenylene Synthesized from Pillar[6]arene. Journal of the American Chemical Society, 2020, 142, 12850-12856.	13.7	69
43	An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals. Cell Chemical Biology, 2020, 27, 1192-1198.e5.	5.2	22
44	Synthesis of Nitrogenâ€Containing Polyaromatics by Azaâ€Annulative Ï€â€Extension of Unfunctionalized Aromatics. Angewandte Chemie, 2020, 132, 6445-6450.	2.0	11
45	Synthesis of Polybenzoacenes: Annulative Dimerization of Phenylene Triflate by Twofold Câ^'H Activation. Angewandte Chemie - International Edition, 2020, 59, 6551-6554.	13.8	29
46	Synthesis of Highly Twisted, Nonplanar Aromatic Macrocycles Enabled by an Axially Chiral 4,5-Diphenylphenanthrene Building Block. Journal of the American Chemical Society, 2020, 142, 3246-3253.	13.7	42
47	Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization. ACS Catalysis, 2020, 10, 3059-3073.	11.2	16
48	Titelbild: Synthesis of Polybenzoacenes: Annulative Dimerization of Phenylene Triflate by Twofold Câ^'H Activation (Angew. Chem. 16/2020). Angewandte Chemie, 2020, 132, 6353-6353.	2.0	0
49	Synthesis of Polybenzoacenes: Annulative Dimerization of Phenylene Triflate by Twofold Câ^'H Activation. Angewandte Chemie, 2020, 132, 6613-6616.	2.0	9
50	Programmable synthesis of multiply arylated cubanes through C–H metalation and arylation. Chemical Science, 2020, 11, 7672-7675.	7.4	24
51	Synthesis of Nitrogenâ€Containing Polyaromatics by Azaâ€Annulative Ï€â€Extension of Unfunctionalized Aromatics. Angewandte Chemie - International Edition, 2020, 59, 6383-6388.	13.8	49
52	Rapid Access to Kinase Inhibitor Pharmacophores by Regioselective Câ€"H Arylation of Thieno[2,3-d]pyrimidine. Organic Letters, 2020, 22, 1547-1551.	4.6	7
53	Annulative π-Extension (APEX) Reactions for Precise Synthesis of Polycyclic Aromatic Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 671-682.	0.1	1
54	Two-step synthesis of a red-emissive warped nanographene derivative via a ten-fold C–H borylation. Chemical Science, 2019, 10, 9038-9041.	7.4	28

#	Article	IF	Citations
55	Graphene Nanoribbon Dielectric Passivation Layers for Graphene Electronics. ACS Applied Nano Materials, 2019, 2, 4825-4831.	5.0	17
56	Topological molecular nanocarbons: All-benzene catenane and trefoil knot. Science, 2019, 365, 272-276.	12.6	192
57	An axially chiral $1,1\hat{a}\in^2$ -biazulene and its $\ddot{i}\in$ -extended derivative: synthesis, structures and properties. Chemical Communications, 2019, 55, 9606-9609.	4.1	16
58	Strength of carbon nanotubes depends on their chemical structures. Nature Communications, 2019, 10, 3040.	12.8	148
59	Negatively Curved Warped Nanographene Self-Assembled on Metal Surfaces. Journal of the American Chemical Society, 2019, 141, 13158-13164.	13.7	38
60	Controlling the Circadian Clock with High Temporal Resolution through Photodosing. Journal of the American Chemical Society, 2019, 141, 15784-15791.	13.7	37
61	Topologically Unique Molecular Nanocarbons. Accounts of Chemical Research, 2019, 52, 2760-2767.	15.6	102
62	Synthesis and structural features of thiophene-fused analogues of warped nanographene and quintuple helicene. Chemical Science, 2019, 10, 2326-2330.	7.4	63
63	Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Science Advances, 2019, 5, eaau9060.	10.3	93
64	Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11528-11536.	7.1	77
65	Dehydrogenative Synthesis of 2,2′â€Bipyridyls through Regioselective Pyridine Dimerization. Angewandte Chemie, 2019, 131, 8429-8433.	2.0	4
66	Armchair and Chiral Carbon Nanobelts: Scholl Reaction in Strained Nanorings. CheM, 2019, 5, 746-748.	11.7	6
67	Synthesis of sterically hindered 4,5-diarylphenanthrenes <i>via</i> acid-catalyzed bisannulation of benzenediacetaldehydes withÂalkynes. Chemical Science, 2019, 10, 5470-5475.	7.4	9
68	Dehydrogenative Synthesis of 2,2′â€Bipyridyls through Regioselective Pyridine Dimerization. Angewandte Chemie - International Edition, 2019, 58, 8341-8345.	13.8	29
69	Bay-Region-Selective Annulative π-Extension (APEX) of Perylene Diimides with Arynes. Synlett, 2019, 30, 423-428.	1.8	18
70	Polycyclic Arene Synthesis by Annulative Ï∈-Extension. Journal of the American Chemical Society, 2019, 141, 3-10.	13.7	185
71	Dissecting plant hormone signaling with synthetic molecules: perspective from the chemists. Current Opinion in Plant Biology, 2019, 47, 32-37.	7.1	9
72	Symmetric Multiple Carbohelicenes. Synlett, 2019, 30, 370-377.	1.8	86

#	Article	IF	CITATIONS
73	A Waterâ€Soluble Warped Nanographene: Synthesis and Applications for Photoinduced Cell Death. Angewandte Chemie, 2018, 130, 2924-2928.	2.0	27
74	Palladium-Catalyzed Esterification of Carboxylic Acids with Aryl Iodides. Organic Letters, 2018, 20, 2428-2432.	4.6	22
75	A Waterâ€Soluble Warped Nanographene: Synthesis and Applications for Photoinduced Cell Death. Angewandte Chemie - International Edition, 2018, 57, 2874-2878.	13.8	102
76	Discovery of Shoot Branching Regulator Targeting Strigolactone Receptor DWARF14. ACS Central Science, 2018, 4, 230-234.	11.3	29
77	Unidirectional molecular assembly alignment on graphene enabled by nanomechanical symmetry breaking. Scientific Reports, 2018, 8, 2333.	3.3	5
78	Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nature Chemical Biology, 2018, 14, 299-305.	8.0	107
79	Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization. Science, 2018, 359, 435-439.	12.6	127
80	A Quintuple [6]Helicene with a Corannulene Core as a <i>C</i> ₅ â€Symmetric Propellerâ€Shaped Ï€â€System. Angewandte Chemie - International Edition, 2018, 57, 1337-1341.	13.8	134
81	A Quintuple [6]Helicene with a Corannulene Core as a <i>C</i> ₅ â€Symmetric Propellerâ€Shaped Ï€â€System. Angewandte Chemie, 2018, 130, 1351-1355.	2.0	67
82	C–H Arylation of Phenanthrene with Trimethylphenylsilane by Pd/ <i>o</i> -Chloranil Catalysis: Computational Studies on the Mechanism, Regioselectivity, and Role of <i>o</i> -Chloranil. Journal of the American Chemical Society, 2018, 140, 2196-2205.	13.7	29
83	Modular synthesis of heptaarylindole. Organic and Biomolecular Chemistry, 2018, 16, 3771-3776.	2.8	18
84	Lateâ€Stage Functionalization of Arylacetic Acids by Photoredoxâ€Catalyzed Decarboxylative Carbon–Heteroatom Bond Formation. Chemistry - A European Journal, 2018, 24, 9254-9258.	3.3	33
85	Pdâ€Catalyzed Decarbonylative Câ^'H Coupling of Azoles and Aromatic Esters. Chemistry - an Asian Journal, 2018, 13, 2393-2396.	3.3	11
86	Synthesis and Structure of a Propeller-Shaped Polycyclic Aromatic Hydrocarbon Containing Seven-Membered Rings. Organic Letters, 2018, 20, 1932-1935.	4.6	64
87	Recent advances in acetylene-based helical oligomers and polymers: Synthesis, structures, and properties. Tetrahedron Letters, 2018, 59, 1531-1547.	1.4	21
88	Hole-transporting materials based on thiophene-fused arenes from sulfur-mediated thienannulations. Materials Chemistry Frontiers, 2018, 2, 275-280.	5.9	16
89	Discovery of Plant Growth Stimulants by C–H Arylation of 2-Azahypoxanthine. Organic Letters, 2018, 20, 5684-5687.	4.6	15
90	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie, 2018, 130, 9827-9831.	2.0	17

#	Article	IF	CITATIONS
91	Ultra-narrow-band near-infrared thermal exciton radiation in intrinsic one-dimensional semiconductors. Nature Communications, 2018, 9, 3144.	12.8	15
92	A Super Strong Engineered Auxin–TIR1 Pair. Plant and Cell Physiology, 2018, 59, 1538-1544.	3.1	25
93	Synthesis and Size-Dependent Properties of [12], [16], and [24]Carbon Nanobelts. Journal of the American Chemical Society, 2018, 140, 10054-10059.	13.7	131
94	Annulative π-extension of indoles and pyrroles with diiodobiaryls by Pd catalysis: rapid synthesis of nitrogen-containing polycyclic aromatic compounds. Chemical Science, 2018, 9, 7556-7561.	7.4	60
95	Goldâ€Catalyzed Câ^'H Imidation of Polycyclic Aromatic Hydrocarbons. Asian Journal of Organic Chemistry, 2018, 7, 1372-1375.	2.7	9
96	Synthesis of a Heptaarylisoquinoline: Unusual Disconnection for Constructing Isoquinoline Frameworks. Chemistry Letters, 2018, 47, 968-970.	1.3	8
97	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie - International Edition, 2018, 57, 9679-9683.	13.8	80
98	Decarbonylative Diaryl Ether Synthesis by Pd and Ni Catalysis. Journal of the American Chemical Society, 2017, 139, 3340-3343.	13.7	112
99	Oneâ€Step Annulative Ï€â€Extension of Alkynes with Dibenzosiloles or Dibenzogermoles by Palladium/ o â€chloranil Catalysis. Angewandte Chemie, 2017, 129, 1381-1384.	2.0	19
100	Die anellierende Erweiterung von Ï€â€Systemen (APEXâ€Reaktion): ein rascher Zugang zu kondensierten Arenen, Heteroarenen und Nanographenen. Angewandte Chemie, 2017, 129, 11296-11317.	2.0	65
101	Theoretical Elucidation of Potential Enantioselectivity in a Pd-Catalyzed Aromatic C–H Coupling Reaction. Journal of Organic Chemistry, 2017, 82, 4900-4906.	3.2	13
102	Synthesis of a carbon nanobelt. Science, 2017, 356, 172-175.	12.6	408
103	Synthesis, properties, and crystal structures of ï€-extended double [6]helicenes: contorted multi-dimensional stacking lattice. Organic and Biomolecular Chemistry, 2017, 15, 4697-4703.	2.8	61
104	Direct Coupling of Naphthalene and Sulfonimides Promoted by DDQ and Blue Light. Chemistry Letters, 2017, 46, 1014-1016.	1.3	19
105	C–H Functionalization of Azines. Chemical Reviews, 2017, 117, 9302-9332.	47.7	406
106	Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie, 2017, 129, 11348-11354.	2.0	17
107	Thiazoleâ€Based Ïf < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1	3.2	6
108	Synthesis of multiply arylated pyridines. Tetrahedron, 2017, 73, 3669-3676.	1.9	28

7

#	Article	IF	Citations
109	Annulative Ï€â€Extension (APEX): Rapid Access to Fused Arenes, Heteroarenes, and Nanographenes. Angewandte Chemie - International Edition, 2017, 56, 11144-11164.	13.8	220
110	Annulative π-Extension (APEX) of Heteroarenes with Dibenzosiloles and Dibenzogermoles by Palladium/ <i>o</i> o-Chloranil Catalysis. Organic Letters, 2017, 19, 1930-1933.	4.6	77
111	Catalytic Dehydrogenative C–H Imidation of Arenes Enabled by Photo-generated Hole Donation to Sulfonimide. CheM, 2017, 2, 383-392.	11.7	86
112	Rh-catalyzed regiodivergent hydrosilylation of acyl aminocyclopropanes controlled by monophosphine ligands. Chemical Science, 2017, 8, 3799-3803.	7.4	21
113	Polymorphism of [6]Cycloparaphenylene for Packing Structure-dependent Host–Guest Interaction. Chemistry Letters, 2017, 46, 855-857.	1.3	26
114	Oneâ€Step Annulative Ï€â€Extension of Alkynes with Dibenzosiloles or Dibenzogermoles by Palladium/ <i>o</i> àâ€chloranil Catalysis. Angewandte Chemie - International Edition, 2017, 56, 1361-1364.	13.8	62
115	Synthesis of Octaaryl Naphthalenes and Anthracenes with Different Substituents. Angewandte Chemie - International Edition, 2017, 56, 15010-15013.	13.8	29
116	Synthesis of Octaaryl Naphthalenes and Anthracenes with Different Substituents. Angewandte Chemie, 2017, 129, 15206-15209.	2.0	12
117	Catalytic α-Arylation of Ketones with Heteroaromatic Esters. Synlett, 2017, 28, 2599-2603.	1.8	19
118	Frontispiece: Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
119	Oxidative Homocoupling Reaction of Aryltrimethylsilanes by Pd/ <i>o</i> chloranil Catalysis.	1.3	15
120	Rapid Access to Nanographenes and Fused Heteroaromatics by Palladium atalyzed Annulative Ï€â€Extension Reaction of Unfunctionalized Aromatics with Diiodobiaryls. Angewandte Chemie, 2017, 129, 12392-12396.	2.0	37
121	Discovery of synthetic small molecules that enhance the number of stomata: C–H functionalization chemistry for plant biology. Chemical Communications, 2017, 53, 9632-9635.	4.1	28
122	Rapid Access to Nanographenes and Fused Heteroaromatics by Palladiumâ€Catalyzed Annulative Ï€â€Extension Reaction of Unfunctionalized Aromatics with Diiodobiaryls. Angewandte Chemie - International Edition, 2017, 56, 12224-12228.	13.8	96
123	Aromatic C–H amination: a radical approach for adding new functions into biology- and materials-oriented aromatics. Organic and Biomolecular Chemistry, 2017, 15, 6071-6075.	2.8	37
124	Laterally π-Extended Dithia[6]helicenes with Heptagons: Saddle-Helix Hybrid Molecules. Journal of Organic Chemistry, 2017, 82, 7745-7749.	3.2	53
125	Phenanthro[9,10- <i>a</i>)corannulene by one-step annulative π-extension of corannulene. Canadian Journal of Chemistry, 2017, 95, 329-333.	1.1	44
126	Cu-Catalyzed aromatic C–H imidation with N-fluorobenzenesulfonimide: mechanistic details and predictive models. Chemical Science, 2017, 8, 988-1001.	7.4	57

#	Article	IF	Citations
127	Palladium-catalyzed Decarbonylative Alkynylation of Aromatic Esters. Chemistry Letters, 2017, 46, 218-220.	1.3	50
128	Synthesis and properties of [8]-, [10]-, [12]-, and [16]cyclo-1,4-naphthylenes. Chemical Science, 2017, 8, 661-667.	7.4	36
129	Frontispiz: Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie, 2017, 129, .	2.0	0
130	Chemical Synthesis of Cycloparaphenylenes. ChemistrySelect, 2017, 2, .	1.5	7
131	Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie - International Edition, 2017, 56, 11196-11202.	13.8	62
132	Synthesis of Triarylpyridines in Thiopeptide Antibiotics by Using a Câ^'H Arylation/Ringâ€Transformation Strategy. Chemistry - A European Journal, 2016, 22, 4384-4388.	3.3	41
133	Design und Synthese von KohlenstoffnanorĶhrensegmenten. Angewandte Chemie, 2016, 128, 5222-5245.	2.0	95
134	Synthesis and Structural Features of Quadruple Helicenes: Highly Distorted π Systems Enabled by Accumulation of Helical Repulsions. Journal of the American Chemical Society, 2016, 138, 3587-3595.	13.7	157
135	Helically Twisted Tetracene: Synthesis, Crystal Structure, and Photophysical Properties of Hexabenzo[a,c,fg,j,l,op]tetracene. Synlett, 2016, 27, 2081-2084.	1.8	46
136	Regiodivergent Cross-Dehydrogenative Coupling of Pyridines and Benzoxazoles: Discovery of Organic Halides as Regio-Switching Oxidants. Organic Letters, 2016, 18, 2415-2418.	4.6	65
137	Palladium-Catalyzed Decarbonylative Cross-Coupling of Azinecarboxylates with Arylboronic Acids. Organic Letters, 2016, 18, 5106-5109.	4.6	45
138	Synthesis, Structure, and Reactivity of a Cylinder-Shaped Cyclo[12]orthophenylene[6]ethynylene: Toward the Synthesis of Zigzag Carbon Nanobelts. Organic Letters, 2016, 18, 5352-5355.	4.6	34
139	Construction of Covalent Organic Nanotubes by Light-Induced Cross-Linking of Diacetylene-Based Helical Polymers. Journal of the American Chemical Society, 2016, 138, 11001-11008.	13.7	67
140	Corannulene–Helicene Hybrids: Chiral π-Systems Comprising Both Bowl and Helical Motifs. Organic Letters, 2016, 18, 3992-3995.	4.6	62
141	Nickel-Catalyzed Aromatic C–H Functionalization. Topics in Current Chemistry, 2016, 374, 55.	5.8	75
142	Thiophene-Fused π-Systems from Diarylacetylenes and Elemental Sulfur. Journal of the American Chemical Society, 2016, 138, 10351-10355.	13.7	112
143	Cyanation of Phenol Derivatives with Aminoacetonitriles by Nickel Catalysis. Organic Letters, 2016, 18, 4428-4431.	4.6	74
144	Palladium-catalyzed C–H Arylation of Pyridines with Aryl Triflates. Chemistry Letters, 2016, 45, 529-531.	1.3	15

#	Article	IF	Citations
145	Structurally uniform and atomically precise carbon nanostructures. Nature Reviews Materials, 2016, 1, .	48.7	417
146	Design and Synthesis of Carbon Nanotube Segments. Angewandte Chemie - International Edition, 2016, 55, 5136-5158.	13.8	300
147	Catalytic Methods for Aromatic C–H Amination: An Ideal Strategy for Nitrogen-Based Functional Molecules. ACS Catalysis, 2016, 6, 610-633.	11.2	456
148	A Theoretical Study on the Strain Energy of Carbon Nanobelts. Organic Letters, 2016, 18, 1430-1433.	4.6	71
149	Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness. Chemical Science, 2016, 7, 4204-4210.	7.4	52
150	Microwave-assisted regioselective direct C–H arylation of thiazole derivatives leading to increased <i>if</i> ₁ receptor affinity. MedChemComm, 2016, 7, 327-331.	3.4	15
151	Synthesis of open-shell ladder π-systems by catalytic C–H annulation of diarylacetylenes. Chemical Science, 2016, 7, 650-654.	7.4	31
152	Synthesis, Properties, and Packing Structures of Corannuleneâ€Based Ï€â€Systems Containing Heptagons. Chemistry - an Asian Journal, 2015, 10, 1635-1639.	3.3	69
153	Curved Oligophenylenes as Donors in Shapeâ€Persistent Donor–Acceptor Macrocycles with Solvatofluorochromic Properties. Angewandte Chemie - International Edition, 2015, 54, 9646-9649.	13.8	94
154	Pyridylidene ligand facilitates gold-catalyzed oxidative Câ€"H arylation of heterocycles. Beilstein Journal of Organic Chemistry, 2015, 11, 2737-2746.	2.2	49
155	Synthesis, Structures, and Properties of π-Extended Double Helicene: A Combination of Planar and Nonplanar π-Systems. Journal of the American Chemical Society, 2015, 137, 7763-7768.	13.7	248
156	Concise Syntheses of Dictyodendrins A and F by a Sequential C–H Functionalization Strategy. Journal of the American Chemical Society, 2015, 137, 644-647.	13.7	129
157	Catalytic C–H Imidation of Aromatic Cores of Functional Molecules: Ligand-Accelerated Cu Catalysis and Application to Materials- and Biology-Oriented Aromatics. Journal of the American Chemical Society, 2015, 137, 2460-2463.	13.7	136
158	One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization. Nature Communications, 2015, 6, 6251.	12.8	167
159	Synthesis and characterization of hexaarylbenzenes with five or six different substituents enabled by programmed synthesis. Nature Chemistry, 2015, 7, 227-233.	13.6	143
160	î- ⁶ -Cycloparaphenylene Transition Metal Complexes: Synthesis, Structure, Photophysical Properties, and Application to the Selective Monofunctionalization of Cycloparaphenylenes. Journal of the American Chemical Society, 2015, 137, 1356-1361.	13.7	91
161	Cycloparaphenyleneâ€Based Ionic Donor–Acceptor Supramolecule: Isolation and Characterization of Li ⁺ @C ₆₀ âŠ,[10]CPP. Angewandte Chemie - International Edition, 2015, 54, 3707-3711.	13.8	137
162	Palladium-free synthesis of [10]cycloparaphenylene. Tetrahedron, 2015, 71, 4500-4503.	1.9	24

#	Article	IF	CITATIONS
163	Decarbonylative organoboron cross-coupling of esters by nickel catalysis. Nature Communications, 2015, 6, 7508.	12.8	237
164	CH Activation Generates Periodâ€Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angewandte Chemie - International Edition, 2015, 54, 7193-7197.	13.8	71
165	<i>>para</i> -Câ€"H Borylation of Benzene Derivatives by a Bulky Iridium Catalyst. Journal of the American Chemical Society, 2015, 137, 5193-5198.	13.7	213
166	Probing strigolactone receptors in <i>Striga hermonthica</i> with fluorescence. Science, 2015, 349, 864-868.	12.6	230
167	C–H arylation and alkenylation of imidazoles by nickel catalysis: solvent-accelerated imidazole C–H activation. Chemical Science, 2015, 6, 6792-6798.	7.4	110
168	Stereodivergent Synthesis of Arylcyclopropylamines by Sequential CH Borylation and Suzukiâ∈"Miyaura Coupling. Angewandte Chemie - International Edition, 2015, 54, 846-851.	13.8	79
169	Ni-Catalyzed \hat{l} ±-arylation of esters and amides with phenol derivatives. Chemical Communications, 2015, 51, 855-857.	4.1	92
170	Thiopheneâ€Based, Radial Ï€â€Conjugation: Synthesis, Structure, and Photophysical Properties of Cycloâ€1,4â€phenyleneâ€2′,5′â€thienylenes. Angewandte Chemie - International Edition, 2015, 54, 159-1	63 ^{13.8}	79
171	Synthesis of Extended π‧ystems through C–H Activation. Angewandte Chemie - International Edition, 2015, 54, 66-81.	13.8	579
172	Sizeâ€Selective Complexation and Extraction of Endohedral Metallofullerenes with Cycloparaphenylene. Angewandte Chemie - International Edition, 2014, 53, 3102-3106.	13.8	144
173	Nickelâ€Catalyzed αâ€Arylation of Ketones with Phenol Derivatives. Angewandte Chemie - International Edition, 2014, 53, 6791-6794.	13.8	158
174	2,4―and 2,5â€Disubstituted Arylthiazoles: Rapid Synthesis by C–H Coupling and Biological Evaluation. European Journal of Organic Chemistry, 2014, 2014, 3387-3394.	2.4	15
175	Synthesis and properties of cycloparaphenylene-2,7-pyrenylene: a pyrene-containing carbon nanoring. Chemical Communications, 2014, 50, 957-959.	4.1	67
176	Selective synthesis of [7]- and [8] cycloparaphenylenes. Chemical Communications, 2014, 50, 954-956.	4.1	92
177	Programmed synthesis of arylthiazoles through sequential C–H couplings. Chemical Science, 2014, 5, 123-135.	7.4	194
178	All-Benzene Carbon Nanocages: Size-Selective Synthesis, Photophysical Properties, and Crystal Structure. Journal of the American Chemical Society, 2014, 136, 16452-16458.	13.7	103
179	Exciton recombination dynamics in nanoring cycloparaphenylenes. Chemical Science, 2014, 5, 2293.	7.4	40
180	Key Mechanistic Features of Ni-Catalyzed C–H/C–O Biaryl Coupling of Azoles and Naphthalen-2-yl Pivalates. Journal of the American Chemical Society, 2014, 136, 14834-14844.	13.7	164

#	Article	IF	Citations
181	Synthesis and Dimerization of Chloro[10]cycloparaphenylene: A Directly Connected Cycloparaphenylene Dimer. Organic Letters, 2014, 16, 2174-2176.	4.6	62
182	CH Alkenylation of Azoles with Enols and Esters by Nickel Catalysis. Angewandte Chemie - International Edition, 2013, 52, 10048-10051.	13.8	144
183	Synthesis and properties of all-benzene carbon nanocages: a junction unit of branched carbon nanotubes. Chemical Science, 2013, 4, 84-88.	7.4	123
184	A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nature Chemistry, 2013, 5, 739-744.	13.6	548
185	Isolation, Structure, and Reactivity of an Arylnickel(II) Pivalate Complex in Catalytic C–H/C–O Biaryl Coupling. Journal of the American Chemical Society, 2013, 135, 16384-16387.	13.7	160
186	Câ€"H activation route to dibenzo[a,e]pentalenes: annulation of arylacetylenes promoted by PdCl2â€"AgOTfâ€"o-chloranil. Chemical Science, 2013, 4, 2369.	7.4	107
187	Palladium-catalyzed direct phenylation of perylene: structural and optical properties of 3,4,9-triphenylperylene and 3,4,9,10-tetraphenylperylene. Tetrahedron, 2013, 69, 4371-4374.	1.9	23
188	Origin of the size-dependent fluorescence blueshift in [n]cycloparaphenylenes. Chemical Science, 2013, 4, 187-195.	7.4	79
189	Initiation of carbon nanotube growth by well-defined carbon nanorings. Nature Chemistry, 2013, 5, 572-576.	13.6	343
190	Aromatic C–H coupling with hindered arylboronic acids by Pd/Fe dual catalysts. Chemical Science, 2013, 4, 3753.	7.4	140
191	One-shot indole-to-carbazole π-extension by a Pd–Cu–Ag trimetallic system. Chemical Science, 2013, 4, 3416.	7.4	143
192	Recent Progress in Nickelâ€Catalyzed Biaryl Coupling. European Journal of Organic Chemistry, 2013, 2013, 19-30.	2.4	485
193	Decarbonylative C–H Coupling of Azoles and Aryl Esters: Unprecedented Nickel Catalysis and Application to the Synthesis of Muscoride A. Journal of the American Chemical Society, 2012, 134, 13573-13576.	13.7	325
194	Excited States in Cycloparaphenylenes: Dependence of Optical Properties on Ring Length. Journal of Physical Chemistry Letters, 2012, 3, 3125-3128.	4.6	94
195	Palladium-Catalyzed C–H Activation Taken to the Limit. Flattening an Aromatic Bowl by Total Arylation. Journal of the American Chemical Society, 2012, 134, 15664-15667.	13.7	89
196	CH Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angewandte Chemie - International Edition, 2012, 51, 8960-9009.	13.8	2,669
197	Lateâ \in Stage Câ \in "H Bond Arylation of Spirocyclic Ï f ₁ Ligands for Analysis of Complementary Ï f ₁ Receptor Surface. European Journal of Organic Chemistry, 2012, 2012, 5972-5979.	2.4	23
198	Palladium-catalyzed tetraallylation of C60 with allyl chloride and allylstannane: mechanism, regioselectivity, and enantioselectivity. Chemical Science, 2012, 3, 3474.	7.4	33

#	Article	IF	CITATIONS
199	Synthesis and Properties of Cycloparaphenylene-2,5-pyridylidene: A Nitrogen-Containing Carbon Nanoring. Organic Letters, 2012, 14, 1888-1891.	4.6	106
200	Nickel-Catalyzed C–H/C–O Coupling of Azoles with Phenol Derivatives. Journal of the American Chemical Society, 2012, 134, 169-172.	13.7	351
201	Pd(OAc) ₂ / <i>o</i> 'Chloranil/M(OTf) _{<i>n</i>} : A Catalyst for the Direct C–H Arylation of Polycyclic Aromatic Hydrocarbons with Boryl-, Silyl-, and Unfunctionalized Arenes. Organic Letters, 2012, 14, 418-421.	4.6	68
202	Synthesis and Properties of [9]Cyclo-1,4-naphthylene: A π-Extended Carbon Nanoring. Journal of the American Chemical Society, 2012, 134, 2962-2965.	13.7	174
203	Mechanistic Studies on the Pdâ€catalyzed Direct CH Arylation of 2â€6ubstituted Thiophene Derivatives with Arylpalladium Bipyridyl Complexes. Chemistry - an Asian Journal, 2012, 7, 1256-1260.	3.3	58
204	Hindered biaryls by C–H coupling: bisoxazoline-Pd catalysis leading to enantioselective C–H coupling. Chemical Science, 2012, 3, 2165.	7.4	210
205	Size-selective synthesis of [9]–[11] and [13]cycloparaphenylenes. Chemical Science, 2012, 3, 2340.	7.4	132
206	Toward controlled synthesis of carbon nanotubes and graphenes. Pure and Applied Chemistry, 2012, 84, 907-916.	1.9	72
207	Combined experimental and theoretical studies on the photophysical properties of cycloparaphenylenes. Organic and Biomolecular Chemistry, 2012, 10, 5979.	2.8	248
208	Synthesis and Racemization Process of Chiral Carbon Nanorings: A Step toward the Chemical Synthesis of Chiral Carbon Nanotubes. Organic Letters, 2011, 13, 2480-2483.	4.6	137
209	Direct Arylation of Polycyclic Aromatic Hydrocarbons through Palladium Catalysis. Journal of the American Chemical Society, 2011, 133, 10716-10719.	13.7	144
210	[9]Cycloparaphenylene: Nickel-mediated Synthesis and Crystal Structure. Chemistry Letters, 2011, 40, 423-425.	1.3	148
211	Molecular catalysis for fullerene functionalization. Chemical Record, 2011, 11, 226-235.	5.8	54
212	Oxidative Biaryl Coupling of Thiophenes and Thiazoles with Arylboronic Acids through Palladium Catalysis: Otherwise Difficult C4â€Selective Cĭ£¿H Arylation Enabled by Boronic Acids. Angewandte Chemie - International Edition, 2011, 50, 2387-2391.	13.8	216
213	Concise Synthesis and Crystal Structure of [12]Cycloparaphenylene. Angewandte Chemie - International Edition, 2011, 50, 3244-3248.	13.8	225
214	A General Catalyst for the β‧elective C–H Bond Arylation of Thiophenes with Iodoarenes. Angewandte Chemie - International Edition, 2010, 49, 8946-8949.	13.8	230
215	A Modular and Sizeâ€Selective Synthesis of [<i>n</i>]Cycloparaphenylenes: A Step toward the Selective Synthesis of [<i>n</i> , <i>n</i>] Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2010, 49, 10202-10205.	13.8	215
216	Toward Ideal Arene Assembly: Catalytic C-H Bond Arylation of Aromatic Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1132-1141.	0.1	13

#	Article	IF	Citations
217	Theoretical Studies on the Structures and Strain Energies of Cycloparaphenylenes. Organic Letters, 2010, 12, 2262-2265.	4.6	240
218	Photopatterning of Poly(arylene dienylene) by the Photoacid-Catalyzed Deprotectionâ ² Elimination Reaction of a Precursor Polymer. Macromolecules, 2010, 43, 1425-1429.	4.8	24
219	Iridium Catalysis for CH Bond Arylation of Heteroarenes with Iodoarenes. Angewandte Chemie - International Edition, 2009, 48, 3644-3647.	13.8	196
220	Selective Synthesis of [12]Cycloparaphenylene. Angewandte Chemie - International Edition, 2009, 48, 6112-6116.	13.8	447
221	Programmed Synthesis of Tetraarylthiophenes through Sequential Câ^'H Arylation. Journal of the American Chemical Society, 2009, 131, 14622-14623.	13.7	242
222	Potassium <i>t</i> -Butoxide Alone Can Promote the Biaryl Coupling of Electron-Deficient Nitrogen Heterocycles and Haloarenes. Organic Letters, 2008, 10, 4673-4676.	4.6	456
223	Direct Câ^'H Arylation of (Hetero)arenes with Aryl Iodides via Rhodium Catalysis. Journal of the American Chemical Society, 2006, 128, 11748-11749.	13.7	306
224	Platform Synthesis: A Useful Strategy for Rapid and Systematic Generation of Molecular Diversity. Chemistry - A European Journal, 2006, 12, 3966-3974.	3.3	52
225	Palladium-Catalyzed Convergent Synthesis and Properties of Conjugated Dendrimers Based on Triarylethene Branching. Angewandte Chemie - International Edition, 2006, 45, 2404-2409.	13.8	67
226	Iron-Catalyzed Cross-Coupling of Alkenyl Sulfides with Grignard Reagents. Organic Letters, 2005, 7, 1219-1222.	4.6	99
227	Triarylethene-Based Extended π-Systems:  Programmable Synthesis and Photophysical Properties. Journal of Organic Chemistry, 2005, 70, 2778-2792.	3.2	153
228	Catalytic Carbometalation/Cross-Coupling Sequence across Alkynyl(2-pyridyl)silanes Leading to a Diversity-Oriented Synthesis of Tamoxifen-Type Tetrasubstituted Olefins. Advanced Synthesis and Catalysis, 2004, 346, 1824-1835.	4.3	45
229	Stereoselective Synthesis of Multisubstituted Butadienes through Directed Mizorokiâ^'Heck Reaction and Homocoupling Reaction of Vinyl(2-pyridyl)silane. Organic Letters, 2004, 6, 3695-3698.	4.6	65
230	Rapid Construction of Multisubstituted Olefin Structures Using Vinylboronate Ester Platform Leading to Highly Fluorescent Materials. Organic Letters, 2004, 6, 4093-4096.	4.6	68
231	Catalytic Intermolecular Pausonâ^'Khand-Type Reaction:Â Strong Directing Effect of Pyridylsilyl and Pyrimidylsilyl Groups and Isolation of Ru Complexes Relevant to Catalytic Reaction. Journal of the American Chemical Society, 2004, 126, 11058-11066.	13.7	55
232	Sequential Assembly Strategy for Tetrasubstituted Olefin Synthesis Using Vinyl 2-Pyrimidyl Sulfide as a Platform. Journal of the American Chemical Society, 2004, 126, 11778-11779.	13.7	146
233	Pyrimidine-Core Extended π-Systems: General Synthesis and Interesting Fluorescent Properties. Journal of the American Chemical Society, 2004, 126, 15396-15397.	13.7	168
234	Palladium-Catalyzed Rearrangement/Arylation of 2-Allyloxypyridine Leading to the Synthesis of N-Substituted 2-Pyridones. Organic Letters, 2003, 5, 2161-2164.	4.6	46

#	Article	IF	Citations
235	Diversity-Oriented Synthesis of Tamoxifen-type Tetrasubstituted Olefins. Journal of the American Chemical Society, 2003, 125, 14670-14671.	13.7	205
236	Efficient and Rapid Câ ⁻ Si Bond Cleavage in Supercritical Water. Journal of the American Chemical Society, 2003, 125, 6058-6059.	13.7	47
237	A General and Straightforward Route toward Diarylmethanes. Integrated Cross-Coupling Reactions Using (2-Pyridyl)silylmethylstannane as an Air-Stable, Storable, and Versatile Coupling Platform. Organic Letters, 2002, 4, 3635-3638.	4.6	67
238	Metal-Catalyzed Hydrosilylation of Alkenes and Alkynes Using Dimethyl (pyridyl)silane. Journal of Organic Chemistry, 2002, 67, 2645-2652.	3.2	94
239	A Pyridylsilyl Group Expands the Scope of Catalytic Intermolecular Pauson–Khand Reactions. Angewandte Chemie - International Edition, 2002, 41, 3481-3484.	13.8	62
240	2-Pyridyldimethylsilyl Group as a Removable Hydrophilic Group in Aqueous Organic Reactions: Formation of Molecular Aggregates and Dramatic Rate Enhancement in Diels-Alder Reactions. Advanced Synthesis and Catalysis, 2002, 344, 441-451.	4.3	22
241	The Use of Hydrophilic Groups in Aqueous Organic Reactions. Chemical Record, 2002, 2, 213-224.	5.8	17
242	Diversity-Oriented Synthesis of Multisubstituted Olefins through the Sequential Integration of Palladium-Catalyzed Cross-Coupling Reactions. 2-Pyridyldimethyl(vinyl)silane as a Versatile Platform for Olefin Synthesis. Journal of the American Chemical Society, 2001, 123, 11577-11585.	13.7	178
243	Regioselective Catalytic Allylic Alkylation Directed by Removable 2-PyMe2Si Group. Journal of the American Chemical Society, 2001, 123, 6957-6958.	13.7	50
244	2-Pyridyldimethylsilyl as a Removable Hydrophilic Group in Aqueous Diels-Alder Reactions. Angewandte Chemie - International Edition, 2001, 40, 1074-1076.	13.8	30
245	Directed Intermolecular Carbomagnesation across Vinylsilanes: 2-PyMe2Si Group as a Removable Directing Group. Angewandte Chemie - International Edition, 2001, 40, 2337-2339.	13.8	48
246	Pyridylsilyl Group as a Multifunctional Phase Tag for Solution-Phase Synthesis Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2001, 59, 1086-1094.	0.1	13
247	Directed intermolecular Carbomagnesation across Vinyisilanes: 2-PyMe(2)Si Group as a Removable Directing Group This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan, and in part by the Mitsubishi Foundation. K.M. thanks the Japan Society for the Promotion of Science for Young Scientists Angewandte Chemie -	13.8	1
248	Palladium-catalysed asymmetric [4 + 2] cycloaddition of vinylallene with 1,3-diene. Chemical Communications, 2000, , 2293-2294.	4.1	32
249	[Bis(2-pyridyldimethylsilyl)methyl]lithium. New Reagent for the Stereoselective Synthesis of Vinylsilanes. Organic Letters, 2000, 2, 1299-1302.	4.6	41
250	Oxidation of 2-Pyridyldimethylsilyl Group to Hydroxyl Group by H2O2/KF. Implication of Fluoride Ion Accelerated 2-Pyridylâ-'Silyl Bond Cleavage. Journal of Organic Chemistry, 1999, 64, 8709-8714.	3.2	32
251	Coordination Modes and Catalytic Carbonylative [4 + 1] Cycloaddition of Vinylallenes. Organometallics, 1999, 18, 1326-1336.	2.3	53
252	Catalytic Asymmetric [4 + 1] Cycloaddition of Vinylallenes with Carbon Monoxide:Â Reversal of the Induced Chirality by the Choice of Metal. Journal of the American Chemical Society, 1999, 121, 4130-4135.	13.7	80

#	Article	IF	CITATION
253	Rhodium-Catalyzed Intermolecular [4+2] Cycloaddition of Unactivated Substrates. Angewandte Chemie - International Edition, 1998, 37, 2248-2250.	13.8	82
254	Single-Step Construction of a Nine-Membered Carbocycle by a New [4+4+1] Cycloaddition. Angewandte Chemie - International Edition, 1998, 37, 3418-3420.	13.8	44
255	A Study on Rhodium– Vinylallene Complexes Leading to a New Reaction, Rhodium-Catalyzed Carbonylative[4 + 1]Cycloaddition. Angewandte Chemie International Edition in English, 1996, 34, 2691-2694.	4.4	58
256	Bemerkenswerter Einfluß von Silylsubstituenten auf den elektrocyclischen Ringschluß von Vinylallenen. Angewandte Chemie, 1995, 107, 1649-1650.	2.0	9
257	Eine Studie zur Koordination von Vinylallenen und zu einer Folgereaktion – der neuen Rhodiumâ€katalysierten carbonylierenden [4 + 1]â€Cycloaddition. Angewandte Chemie, 1995, 107, 2943-2946.	2.0	31
258	A Remarkable Effect of Silyl Substitution on Electrocyclization of Vinylallenes. Angewandte Chemie International Edition in English, 1995, 34, 1476-1477.	4.4	36
259	Chelation-Controlled Mizoroki–Heck Reactions. , 0, , 259-279.		8