
K Ganesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10903245/publications.pdf Version: 2024-02-01

K CANESAN

#	Article	IF	CITATIONS
1	A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 2016, 18, 22160-22167.	2.8	136
2	Evolution and defect analysis of vertical graphene nanosheets. Journal of Raman Spectroscopy, 2014, 45, 642-649.	2.5	109
3	Influence of substrate on nucleation and growth of vertical graphene nanosheets. Applied Surface Science, 2015, 349, 576-581.	6.1	67
4	Tribofilm formation in ultrananocrystalline diamond film. Diamond and Related Materials, 2017, 78, 12-23.	3.9	32
5	Role of microstructure and structural disorder on tribological properties of polycrystalline diamond films. Applied Surface Science, 2019, 469, 10-17.	6.1	27
6	Interpretation of friction and wear in DLC film: role of surface chemistry and test environment. Journal Physics D: Applied Physics, 2016, 49, 445302.	2.8	26
7	Tribological behavior of hydrogenated DLC film: Chemical and physical transformations at nano-scale. Wear, 2015, 338-339, 105-113.	3.1	25
8	MnO2-Vertical graphene nanosheets composite electrodes for energy storage devices. Materials Today: Proceedings, 2016, 3, 1686-1692.	1.8	24
9	Flipping growth orientation of nanographitic structures by plasma enhanced chemical vapor deposition. RSC Advances, 2015, 5, 91922-91931.	3.6	22
10	Magnetic and Magnetotransport Properties of Diluted Magnetic Semiconductor (Ga,Mn)Sb Crystals. Journal of Superconductivity and Novel Magnetism, 2008, 21, 391-397.	1.8	19
11	Growth, magnetotransport, and magnetic properties of ferromagnetic (In,Mn)Sb crystals. Journal of Applied Physics, 2008, 103, 043701.	2.5	18
12	Tribological Properties of Ultrananocrystalline Diamond Films in Inert and Reactive Tribo-Atmospheres: XPS Depth-Resolved Chemical Analysis. Journal of Physical Chemistry C, 2018, 122, 8602-8613.	3.1	18
13	Influence of magnetic clusters on electrical and magnetic properties of In1â^'xMnxSb/GaAs dilute magnetic semiconductor grown by liquid phase epitaxy. Solid State Communications, 2007, 143, 272-275.	1.9	14
14	Conductive atomic force microscopy studies on dielectric breakdown behavior of ultrathin Al2O3 films. Applied Physics Letters, 2011, 98, .	3.3	13
15	Si and N - Vacancy color centers in discrete diamond nanoparticles: Raman and fluorescence spectroscopic studies. Diamond and Related Materials, 2019, 92, 150-158.	3.9	10
16	The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films. Journal Physics D: Applied Physics, 2017, 50, 175601.	2.8	9
17	Pre- and post-breakdown electrical studies in ultrathin Al2O3 films byÂconductive atomic force microscopy. Current Applied Physics, 2013, 13, 1865-1869.	2.4	8
18	Structural, Raman and photoluminescence studies on nanocrystalline diamond films: Effects of ammonia in feedstock. Diamond and Related Materials, 2020, 106, 107872.	3.9	6

K GANESAN

#	Article	IF	CITATIONS
19	Dynamic friction behavior of ultrananocrystalline diamond films: A depth-resolved chemical phase analysis. Ceramics International, 2019, 45, 23418-23422.	4.8	4
20	Optical absorption and photoluminescence studies on heavily doped (Ga,Mn)Sb crystals. Semiconductor Science and Technology, 2010, 25, 105003.	2.0	3
21	Direct microscopic evidence of shear induced graphitization of ultrananocrystalline diamond films. Carbon Trends, 2021, 4, 100078.	3.0	1