
Shyam S Kocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10902786/publications.pdf Version: 2024-02-01

SHYAM SKOCHA

#	Article	IF	CITATIONS
1	Using Ultrasound to Effectively Homogenise Catalyst Inks: Is this Approach Still Acceptable?. Johnson Matthey Technology Review, 2022, 66, 61-76.	1.0	15
2	Advances in rapid and effective break-in/conditioning/recovery of automotive PEMFC stacks. Current Opinion in Electrochemistry, 2022, 31, 100843.	4.8	8
3	Polymer Electrolyte Membrane (PEM) Fuel Cells: Automotive Applications. , 2019, , 135-171.		4
4	Exceptional Oxygen Reduction Reaction Activity and Durability of Platinum–Nickel Nanowires through Synthesis and Post-Treatment Optimization. ACS Omega, 2017, 2, 1408-1418.	3.5	53
5	Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode. Electrocatalysis, 2017, 8, 366-374.	3.0	121
6	Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications. , 2017, , 1-38.		0
7	Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas. Journal of the Electrochemical Society, 2016, 163, F3051-F3056.	2.9	63
8	Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, F3105-F3112.	2.9	154
9	Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation. Journal of Power Sources, 2016, 325, 745-751.	7.8	120
10	Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion. Electrochimica Acta, 2016, 213, 783-790.	5.2	45
11	Oxidation of Platinum Nickel Nanowires to Improve Durability of Oxygen-Reducing Electrocatalysts. Journal of the Electrochemical Society, 2016, 163, F296-F301.	2.9	22
12	Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society, 2015, 162, F1384-F1396.	2.9	211
13	Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction. ECS Transactions, 2015, 69, 883-892.	0.5	14
14	Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods. International Journal of Hydrogen Energy, 2015, 40, 16820-16830.	7.1	47
15	Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts. Journal of the Electrochemical Society, 2015, 162, F1299-F1304.	2.9	15
16	Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society, 2015, 162, F1144-F1158.	2.9	261
17	Platinum-Coated Nickel Nanowires as Oxygen-Reducing Electrocatalysts. ACS Catalysis, 2014, 4, 1114-1119.	11.2	79
18	Platinum-Coated Cobalt Nanowires as Oxygen Reduction Reaction Electrocatalysts. ACS Catalysis, 2014. 4. 2680-2686.	11.2	59

SHYAM S KOCHA

#	Article	IF	CITATIONS
19	Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications. , 2013, , 473-518.		7
20	Oxygen Reduction Activity of Vapor-Grown Platinum Nanotubes. Journal of the Electrochemical Society, 2013, 160, F848-F852.	2.9	27
21	Influence of Film Morphology On the Oxygen Reduction Reaction Activity in Rotating Disk Electrode Studies. ECS Meeting Abstracts, 2013, , .	0.0	1
22	Platinum Nanoplates as Fuel Cell Electrocatalysts. Journal of the Electrochemical Society, 2012, 159, F622-F627.	2.9	18
23	Electrochemical Degradation. , 2012, , 89-214.		53
24	Electrocatalytic Activity Analysis of PEFC Cathode by 1-D Macrohomogeneous Model of Catalyst Layer. Electrochemistry, 2011, 79, 404-413.	1.4	8
25	Examination of the activity and durability of PEMFC catalysts in liquid electrolytes. Journal of Power Sources, 2010, 195, 6312-6322.	7.8	148
26	Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction. Analytical Chemistry, 2010, 82, 6321-6328.	6.5	572
27	Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition. Journal of Power Sources, 2009, 187, 324-331.	7.8	73
28	Electrocatalyst Durability under Simulated Automotive Drive Cycles. ECS Transactions, 2008, 16, 225-234.	0.5	102
29	The Impact of Cycle Profile on PEMFC Durability. ECS Transactions, 2007, 11, 1215-1226.	0.5	106
30	Artifacts in Measuring Electrode Catalyst Area of Fuel Cells through Cyclic Voltammetry. ECS Transactions, 2007, 11, 403-410.	0.5	85
31	Characterization of gas crossover and its implications in PEM fuel cells. AICHE Journal, 2006, 52, 1916-1925.	3.6	289
32	Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005, 56, 9-35.	20.2	4,307
33	Two Fuel Cell Cars In Every Garage?. Electrochemical Society Interface, 2005, 14, 24-35.	0.4	331
34	Investigations of the Fe1.99Ti0.01O3–electrolyte interface. Electrochimica Acta, 2000, 45, 1999-2005.	5.2	23
35	Impedance analysis of surface modified Ga0.5In0.5P—aqueous electrolyte interface. Electrochimica Acta, 1996, 41, 1295-1304.	5.2	16
36	Investigation of chemical wet-etch surface modification of Ga0.5In0.5P using photoluminescence , x-ray photoelectron spectroscopy, capacitance measurements, and photocurrent-voltage curves. The Journal of Physical Chemistry, 1995, 99, 744-749.	2.9	10

#	Article	IF	CITATIONS
37	Displacement of the Bandedges of GalnP2 in Aqueous Electrolytes Induced by Surface Modification. Journal of the Electrochemical Society, 1995, 142, 2625-2630.	2.9	51
38	Electrochemical Investigation of the Gallium Nitrideâ€Aqueous Electrolyte Interface. Journal of the Electrochemical Society, 1995, 142, L238-L240.	2.9	110
39	Study of the Schottky barrier and determination of the energetic positions of band edges at the n- and p-type gallium indium phosphide electrode electrolyte interface. Journal of Electroanalytical Chemistry, 1994, 367, 27-30.	3.8	39