Carla Braitenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1090187/publications.pdf

Version: 2024-02-01

172207 182168 2,863 97 29 51 citations h-index g-index papers 107 107 107 2419 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Earth's Free Oscillations Excited by the 26 December 2004 Sumatra-Andaman Earthquake. Science, 2005, 308, 1139-1144.	6.0	231
2	Holocene relative sea-level changes and vertical movements along the Italian and Istrian coastlines. Quaternary International, 2009, 206, 102-133.	0.7	202
3	Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	157
4	Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics, 2016, 81, F41-F48.	1.4	134
5	Geometry of orientation columns in the visual cortex. Biological Cybernetics, 1979, 33, 179-186.	0.6	118
6	Spatial variations of flexure parameters over the Tibet–Quinghai plateau. Earth and Planetary Science Letters, 2003, 205, 211-224.	1.8	111
7	Moho undulations beneath Tibet from GRACE-integrated gravity data. Geophysical Journal International, 2007, 170, 971-985.	1.0	92
8	The gravity and isostatic Moho undulations in Qinghai–Tibet plateau. Journal of Geodynamics, 2000, 30, 489-505.	0.7	90
9	Inverse modelling of elastic thickness by convolution method – the eastern Alps as a case example. Earth and Planetary Science Letters, 2002, 202, 387-404.	1.8	83
10	Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surveys in Geophysics, 2015, 36, 743-772.	2.1	79
11	GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophysical Journal International, 2012, 190, 941-959.	1.0	61
12	Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps. Tectonophysics, 2001, 337, 191-208.	0.9	58
13	A new analytical solution estimating the flexural rigidity in the Central Andes. Geophysical Journal International, 2007, 169, 789-794.	1.0	57
14	Explaining the thick crust in Paran \tilde{A}_i basin, Brazil, with satellite GOCE gravity observations. Journal of South American Earth Sciences, 2013, 45, 209-223.	0.6	51
15	Exploration of tectonic structures with GOCE in Africa and across-continents. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 88-95.	1.4	50
16	Insights into the lithospheric structure and tectonic setting of the Barents Sea region from isostatic considerations. Geophysical Journal International, 2007, 171, 1390-1403.	1.0	48
17	New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data. Journal of Geophysical Research, 2009, 114, .	3.3	48
18	The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. Geological Society Special Publication, 2011, 357, 329-341.	0.8	46

#	Article	IF	CITATIONS
19	Spectral and classical methods in the evaluation of Moho undulations from gravity data: The NE Italian Alps and isostasy. Journal of Geodynamics, 1997, 23, 5-22.	0.7	45
20	The lithospheric density structure of the Eastern Alps. Tectonophysics, 2006, 414, 145-155.	0.9	45
21	GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics, 2014, 622, 198-215.	0.9	44
22	Hydrologically induced slope deformations detected by GPS and clinometric surveys in the Cansiglio Plateau, southern Alps. Earth and Planetary Science Letters, 2015, 419, 134-142.	1.8	43
23	Measurements and interpretations of tilt–strain gauges in seismically active areas. Earth-Science Reviews, 1999, 47, 151-187.	4.0	40
24	Geophysical constraints on the link between cratonization and orogeny: Evidence from the Tibetan Plateau and the North China Craton. Earth-Science Reviews, 2014, 130, 1-48.	4.0	40
25	Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data. Scientific Reports, 2015, 5, 11681.	1.6	39
26	Magnetotelluric deep soundings, gravity and geoid in the south São Francisco craton: Geophysical indicators of cratonic lithosphere rejuvenation and crustal underplating. Earth and Planetary Science Letters, 2010, 297, 423-434.	1.8	37
27	Crustal density structure from 3D gravity modeling beneath Himalaya and Lhasa blocks, Tibet. Journal of Asian Earth Sciences, 2013, 78, 301-317.	1.0	33
28	Threeâ€dimensional fold structure of the Tibetan Moho from GRACE gravity data. Geophysical Research Letters, 2009, 36, .	1.5	32
29	Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, 2012, 40-41, 47-58.	1.2	31
30	Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophysical Journal International, 2013, 195, 870-882.	1.0	31
31	The very-broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): Secular term tilting and the great Sumatra-Andaman islands earthquake of December 26, 2004. Journal of Geodynamics, 2006, 41, 164-174.	0.7	30
32	New gravity maps of the Eastern Alps and significance for the crustal structures. Tectonophysics, 2006, 414, 127-143.	0.9	28
33	New evidence about the subduction of the Copiap \tilde{A}^3 ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models. Journal of Geodynamics, 2015, 91, 65-88.	0.7	28
34	The GOCE Estimated Moho Beneath the Tibetan Plateau and Himalaya. International Association of Geodesy Symposia, 2014, , 391-397.	0.2	27
35	Gravity inversion in Qinghai-Tibet Plateau. Physics and Chemistry of the Earth, 2000, 25, 381-386.	0.6	26
36	Geodetic and hydrological aspects of the Merano earthquake of 17 July 2001. Journal of Geodynamics, 2005, 39, 317-336.	0.7	25

#	Article	IF	CITATIONS
37	Interpretation of gravity data by the continuous wavelet transform: The case of the Chad lineament (North-Central Africa). Journal of Applied Geophysics, 2013, 90, 62-70.	0.9	25
38	The buried shape of an alpine valley from gravity surveys, seismic and ambient noise analysis. Geophysical Journal International, 2010, 180, 715-733.	1.0	24
39	The GRACEâ€satellite gravity and geoid fields in analysing largeâ€scale, cratonic or intracratonic basins. Geophysical Prospecting, 2009, 57, 559-571.	1.0	23
40	MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field. Surveys in Geophysics, 2019, 40, 1029-1053.	2.1	23
41	Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark. Pure and Applied Geophysics, 2016, 173, 1243-1264.	0.8	21
42	Joint Gravity and Isostatic Analysis for Basement Studies – A Novel Tool. , 2007, , .		20
43	Estimating the hydrologic induced signal in geodetic measurements with predictive filtering methods. Geophysical Research Letters, 1999, 26, 775-778.	1.5	19
44	Archean crust and metallogenic zones in the Amazonian Craton sensed by satellite gravity data. Scientific Reports, 2019, 9, 2565.	1.6	19
45	The Congo Basin: Stratigraphy and subsurface structure defined by regional seismic reflection, refraction and well data. Global and Planetary Change, 2021, 198, 103407.	1.6	18
46	Gradients from GOCE reveal gravity changes before Pisagua MwÂ=Â8.2 and Iquique MwÂ=Â7.7 large megathrust earthquakes. Journal of South American Earth Sciences, 2015, 64, 273-287.	0.6	16
47	Comparative Analysis of the Free Oscillations Generated by the Sumatra- Andaman Islands 2004 and the Chile 1960 Earthquakes. Bulletin of the Seismological Society of America, 2007, 97, S6-S17.	1.1	15
48	A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate. International Journal of Geophysics, 2009, 2009, 1-8.	0.4	14
49	Vertical crustal motions from differential tide gauge observations and satellite altimetry in southern Italy. Journal of Geodynamics, 2011, 51, 233-244.	0.7	14
50	Sardinia Coastal Uplift and Volcanism. Pure and Applied Geophysics, 2009, 166, 1369-1402.	0.8	13
51	Lithosphere density structure beneath the eastern margin of the Tibetan Plateau and its surrounding areas derived from GOCE gradients data. Geodesy and Geodynamics, 2017, 8, 147-154.	1.0	13
52	Non-random spectral components in the seismicity of NE Italy. Earth and Planetary Science Letters, 2000, 179, 379-390.	1.8	12
53	New insights into the Andean crustal structure between 32° and 34°S from GOCE satellite gravity data and EGM2008 model. Geological Society Special Publication, 2015, 399, 183-202.	0.8	12
54	Interference of tectonic signals in subsurface hydrologic monitoring through gravity and GPS due to mountain building. Global and Planetary Change, 2018, 167, 148-159.	1.6	12

#	Article	IF	CITATIONS
55	Mass variation observing system by high low inter-satellite links (MOBILE) $\hat{a} \in \text{``}$ a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, 2019, 9, 48-58.	0.5	12
56	The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers. Earth System Science Data, 2021, 13, 2165-2209.	3.7	12
57	Terrain uplift due to natural hydrologic overpressure in karstic conduits. Scientific Reports, 2019, 9, 3934.	1.6	11
58	Radon monitoring in a cave of North-Eastern Italy. Physics and Chemistry of the Earth, 1998, 23, 949-952.	0.3	10
59	Analysis of vertical movements in eastern Sicily and southern Calabria (Italy) through geodetic leveling data. Journal of Geodynamics, 2013, 66, 1-12.	0.7	10
60	Laser-scan and gravity joint investigation for subsurface cavity exploration â€" The Grotta Gigante benchmark. Geophysics, 2015, 80, B83-B94.	1.4	10
61	A quantitative approach to the loading rate of seismogenic sources in Italy. Geophysical Journal International, 2018, 213, 2096-2111.	1.0	9
62	The deforming and rotating Earth $\hat{a} \in A$ review of the 18th International Symposium on Geodynamics and Earth Tide, Trieste 2016. Geodesy and Geodynamics, 2018, 9, 187-196.	1.0	9
63	The study of karstic aquifers by geodetic measurements in Bus de la Genziana station – Cansiglio plateau (Northeastern Italy). Acta Carsologica, 2012, 40, .	0.3	9
64	Metamorphic CO2 production in calc-silicate rocks from the eastern Himalaya. Italian Journal of Geosciences, 2017, 136, 39-49.	0.4	8
65	Cansiglio Karst Plateau: 10 Years of Geodetic–Hydrological Observations in Seismically Active Northeast Italy. Pure and Applied Geophysics, 2018, 175, 1765-1781.	0.8	8
66	Sensitivity of gravity and topography regressions to earth and planetary structures. Tectonophysics, 2020, 774, 228299.	0.9	8
67	The Friuli (NE-Italy) tilt/strain gauges and short term observations. Annals of Geophysics, 1999, 42, .	0.5	8
68	Reviewing megathrust slip behavior for recent Mw > 8.0 earthquakes along the Peru-Chilean margin from satellite GOCE gravity field derivatives. Tectonophysics, 2019, 769, 228188.	0.9	7
69	Geodetic measurements at the northern border of the Adria plate. Journal of Geodynamics, 2001, 32, 267-286.	0.7	6
70	Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography. Solid Earth, 2021, 12, 539-561.	1.2	6
71	Geophysical Challenges for Future Satellite Gravity Missions: Assessing the Impact of MOCASS Mission. Pure and Applied Geophysics, 2021, 178, 2223-2240.	0.8	6
72	Gravity as a tool to improve the hydrologic mass budget in karstic areas. Hydrology and Earth System Sciences, 2021, 25, 6001-6021.	1.9	6

#	Article	IF	CITATIONS
73	Karst caves and hydrology between geodesy and archeology: Field trip notes. Geodesy and Geodynamics, 2018, 9, 262-269.	1.0	5
74	Geodynamics and Earth Tides Observations from Global to Micro Scale: Introduction. Pure and Applied Geophysics, 2018, 175, 1595-1597.	0.8	5
75	A geothermal application for GOCE satellite gravity data: modelling the crustal heat production and lithospheric temperature field in Central Europe. Geophysical Journal International, 2019, 219, 1008-1031.	1.0	5
76	Gravimetry and petrophysics for defining the intracratonic and rift basins of the Western-Central Africa zone. Geophysics, 2021, 86, B369-B388.	1.4	5
77	Interpretation of Long-Period Magnetotelluric Soundings In Friuli (North-East Italy) and the Electrical Characteristic of the Lithosphere. Geophysical Journal International, 1994, 117, 196-204.	1.0	4
78	The Congo Basin: Subsurface structure interpreted using potential field data and constrained by seismic data. Global and Planetary Change, 2021, 205, 103611.	1.6	4
79	A Grip on Geological Units with GOCE. International Association of Geodesy Symposia, 2014, , 309-317.	0.2	3
80	Strain Accumulation and Release of the Gorkha, Nepal, Earthquake (M w 7.8, 25 April 2015). Pure and Applied Geophysics, 2018, 175, 1909-1923.	0.8	3
81	Recurrence of Fault Valve Behavior in a Continental Collision Area: Evidence From Tilt/Strain Measurements in Northern Adria. Frontiers in Earth Science, 2021, 9, .	0.8	3
82	Thickness of sediments in the Congo basin based on the analysis of decompensative gravity anomalies. Journal of African Earth Sciences, 2021, 179, 104201.	0.9	3
83	Detecting the Elevated Crust to Mantle Section in the Kohistan-Ladakh Arc, Himalaya, from GOCE Observations. International Association of Geodesy Symposia, 2014, , 299-307.	0.2	3
84	Bathymetry and Crustal Thickness Variations from Gravity Inversion and Flexural Isostasy. International Association of Geodesy Symposia, 2003, , 143-149.	0.2	3
85	Illustrating the superposition of signals recorded by the Grotta Gigante pendulums with musical analogues. Acta Carsologica, 2014, 43, .	0.3	2
86	Decoupled Lithospheric Folding, Lower Crustal Flow Channels, and the Growth of Tibetan Plateau. Geophysical Research Letters, 2022, 49, .	1.5	2
87	Editorial note for the Geodesy and Geodynamics journal special issue. Geodesy and Geodynamics, 2018, 9, 183-186.	1.0	1
88	Mapping New IOCG Mineral Systems in Brazil: The Vale do CuraçÃ; and Riacho do Pontal Copper Districts. Minerals (Basel, Switzerland), 2020, 10, 1074.	0.8	1
89	Tilting and Horizontal Movement at and across the Northern Border of the Adria Plate. , 2006, , 129-137.		1
90	The Peru-Chile Margin from Global Gravity Field Derivatives. Springer Earth System Sciences, 2018, , 59-79.	0.1	0

#	Article	IF	Citations
91	Geodetic Pendulums, Horizontal Ultra Broad Band. Encyclopedia of Earth Sciences Series, 2021, , 447-452.	0.1	O
92	PALEOSTRIPv1.0 $\hat{a} \in \hat{a}$ a user-friendly 3D backtracking software to reconstruct paleo-bathymetries. Geoscientific Model Development, 2021, 14, 5285-5305.	1.3	0
93	Modelagem Gravimétrica direta 3-D do SE do cráton São Francisco. , 2007, , .		0
94	Sardinia Coastal Uplift and Volcanism. , 2009, , 1369-1402.		0
95	Geodetic Pendulums, Horizontal Ultra Broad Band. Encyclopedia of Earth Sciences Series, 2011, , 336-340.	0.1	0
96	The iterative signal enhancing method for determining magnetotelluric impedance. Annals of Geophysics, 1996, 39, .	0.5	0
97	Illustrating the superposition of signals recorded by the Grotta Gigante pendulums with musical analogues. Acta Carsologica, 2014, 43, .	0.3	0