Jaekyung Sung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10901846/publications.pdf

Version: 2024-02-01

394421 580821 2,146 24 19 citations h-index papers

g-index 25 25 25 2152 docs citations times ranked citing authors all docs

25

#	Article	IF	CITATIONS
1	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	13.8	460
2	Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nature Energy, 2021, 6, 362-371.	39.5	274
3	A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1449-1459.	30.8	213
4	Boosting Reaction Homogeneity in Highâ€Energy Lithiumâ€Ion Battery Cathode Materials. Advanced Materials, 2020, 32, e2003040.	21.0	130
5	Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nature Communications, 2021, 12, 838.	12.8	122
6	Calenderingâ€Compatible Macroporous Architecture for Silicon–Graphite Composite toward Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2003286.	21.0	111
7	Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Advanced Energy Materials, 2019, 9, 1803121.	19.5	107
8	Unveiling Nickel Chemistry in Stabilizing Highâ€Voltage Cobaltâ€Rich Cathodes for Lithiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 1907903.	14.9	107
9	Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nature Energy, 2021, 6, 1164-1175.	39.5	107
10	Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nature Communications, 2019, 10, 475.	12.8	79
11	Quantification of Pseudocapacitive Contribution in Nanocageâ€Shaped Silicon–Carbon Composite Anode. Advanced Energy Materials, 2019, 9, 1803480.	19.5	75
12	Fabrication of Lamellar Nanosphere Structure for Effective Stressâ€Management in Largeâ€Volumeâ€Variation Anodes of Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1900970.	21.0	52
13	Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithiumâ€ion Battery Anodes. Advanced Energy Materials, 2020, 10, 1903400.	19.5	50
14	Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy and Environmental Science, 2020, 13, 1212-1221.	30.8	48
15	Stress Relief Principle of Micronâ€Sized Anodes with Large Volume Variation for Practical Highâ€Energy Lithiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2004841.	14.9	37
16	Scalable Synthesis of Hollow \hat{I}^2 -SiC/Si Anodes <i>via</i> Selective Thermal Oxidation for Lithium-Ion Batteries. ACS Nano, 2020, 14, 11548-11557.	14.6	32
17	Latticeâ€Oxygenâ€Stabilized Li―and Mnâ€Rich Cathodes with Subâ€Micrometer Particles by Modifying the Excessâ€Li Distribution. Advanced Materials, 2021, 33, e2100352.	21.0	32
18	Thermally Converted CoO Nanoparticles Embedded into Nâ€Doped Carbon Layers as Highly Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 1503-1510.	3.7	31

#	Article	IF	CITATIONS
19	Graphit―undâ€Siliciumâ€Anoden fþr Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	2.0	23
20	Recent progress of analysis techniques for silicon-based anode of lithium-ion batteries. Current Opinion in Electrochemistry, 2017, 6, 77-83.	4.8	16
21	Unraveling the Rapid Redox Behavior of Liâ€Excess 3dâ€Transition Metal Oxides for High Rate Capability. Advanced Energy Materials, 2020, 10, 1904092.	19.5	14
22	Metal-Ion Chelating Gel Polymer Electrolyte for Ni-Rich Layered Cathode Materials at a High Voltage and an Elevated Temperature. ACS Applied Materials & Elevated Temperature. ACS Applied Materials & Elevated Temperature.	8.0	9
23	Evaluation of the Volumetric Activity of the Air Electrode in a Zinc–Air Battery Using a Nitrogen and Sulfur Co-doped Metal-free Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 57064-57070.	8.0	6
24	Highly Densified Fractureâ€Free Siliconâ€Based Electrode for High Energy Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	4.7	6