Tony Vancov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109011/publications.pdf Version: 2024-02-01

TONY VANCOV

#	Article	IF	CITATIONS
1	Unraveling microbiomes and functions associated with strategic tillage, stubble, and fertilizer management. Agriculture, Ecosystems and Environment, 2022, 323, 107686.	5.3	8
2	Effect of soil degradation on the carbon concentration and retention of nitrogen and phosphorus across Chinese rice paddy fields. Catena, 2022, 209, 105810.	5.0	21
3	In Vitro Anti-Inflammatory Activity of Essential Oil and β-Bisabolol Derived from Cotton Gin Trash. Molecules, 2022, 27, 526.	3.8	7
4	Interactive effects of sea-level rise and nitrogen enrichment on the decay of different plant residues in an oligohaline estuarine marsh. Estuarine, Coastal and Shelf Science, 2022, 270, 107835.	2.1	1
5	Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems. Soil Biology and Biochemistry, 2022, 170, 108693.	8.8	13
6	Soil carbon, nutrients and their stoichiometry decrement in relation to paddy field degradation: Investigation in a subtropical region. Catena, 2022, 217, 106484.	5.0	4
7	Isolation and Characterization of Endomycorrhizal Fungi Associated with Growth Promotion of Blueberry Plants. Journal of Fungi (Basel, Switzerland), 2021, 7, 584.	3.5	9
8	Pilot scale demonstration of a two-stage pretreatment and bioethanol fermentation process for cotton gin trash. Bioresource Technology, 2021, 335, 125224.	9.6	6
9	Improved Cellulosic Ethanol Titres from Highly Lignified Cotton Trash Residues Using Various Batch and Fed-Batch Process Configurations. Bioenergy Research, 2019, 12, 1021-1032.	3.9	5
10	Chemical volatiles present in cotton gin trash: A by-product of cotton processing. PLoS ONE, 2019, 14, e0222146.	2.5	2
11	Two-Stage Pretreatment Process Validation for Production of Ethanol from Cotton Gin Trash. Bioenergy Research, 2019, 12, 593-604.	3.9	5
12	Refining spent cotton gin trash following essential oil extraction for value added cellulosic sugars. Bioresource Technology Reports, 2019, 7, 100223.	2.7	5
13	A two stage pretreatment process to maximise recovery of sugars from cotton gin trash. Bioresource Technology Reports, 2018, 4, 114-122.	2.7	10
14	Bioethanol potential of Eucalyptus obliqua sawdust using gamma-valerolactone fractionation. Bioresource Technology, 2018, 250, 673-682.	9.6	33
15	Simultaneous Saccharification and Fermentation of Pretreated Eucalyptus grandis Under High Solids Loading. Industrial Biotechnology, 2017, 13, 131-140.	0.8	17
16	Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant. Molecules, 2017, 22, 93.	3.8	56
17	Pilotâ€scale cellulosic ethanol production using eucalyptus biomass preâ€treated by dilute acid and steam explosion. Biofuels, Bioproducts and Biorefining, 2016, 10, 346-358.	3.7	54
18	Impact of Herbicides on Soil Biology and Function. Advances in Agronomy, 2016, , 133-220.	5.2	98

Τονύ Vancov

#	Article	IF	CITATIONS
19	Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose, 2016, 23, 3771-3783.	4.9	20
20	Process options for conversion of Agave tequilana leaves into bioethanol. Industrial Crops and Products, 2016, 84, 263-272.	5.2	21
21	Potential use of feedlot cattle manure for bioethanol production. Bioresource Technology, 2015, 183, 120-128.	9.6	35
22	Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?. PLoS ONE, 2015, 10, e0144169.	2.5	48
23	Nutrient removal and microbial communities' development in a young unplanted constructed wetland using Bauxsolâ,,¢ pellets to treat wastewater. Science of the Total Environment, 2014, 484, 167-175.	8.0	13
24	Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes. Bioresource Technology, 2014, 173, 42-51.	9.6	46
25	Diversity of microbial communities in an attached-growth system using Bauxsolâ,,¢ pellets for wastewater treatment. Science of the Total Environment, 2012, 433, 383-389.	8.0	15
26	Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Applied Energy, 2012, 92, 421-428.	10.1	51
27	Ethanol production from Eucalyptus plantation thinnings. Bioresource Technology, 2012, 110, 264-272.	9.6	55
28	Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 2012, 45, 1-6.	8.9	154
29	Nutrient and Trace-Metal Removal by Bauxsol Pellets in Wastewater Treatment. Environmental Science & Technology, 2011, 45, 5746-5753.	10.0	20
30	Alkali Pretreatment of Cereal Crop Residues for Second-Generation Biofuels. Energy & Fuels, 2011, 25, 2754-2763.	5.1	45
31	Effects of dilute acid pretreatment on enzyme saccharification of wheat stubble. Journal of Chemical Technology and Biotechnology, 2011, 86, 818-825.	3.2	18
32	Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass and Bioenergy, 2011, 35, 3094-3103.	5.7	187
33	Are Sewage Treatment Plants Promoting Antibiotic Resistance?. Critical Reviews in Environmental Science and Technology, 2011, 41, 243-270.	12.8	45
34	Minimising Alkalinity and pH Spikes from Portland Cement-Bound Bauxsol (Seawater-Neutralized Red) Tj ETQqO (0 rgBT /0 10.0	Overlock 10 T 15
35	Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresource Technology, 2010, 101, 6718-6727.	9.6	224

Τονύ Vancov

#	Article	IF	CITATIONS
37	Rapid isolation and high-throughput determination of cellulase and laminarinase activity in soils. Journal of Microbiological Methods, 2009, 79, 174-177.	1.6	16
38	Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads. Journal of Applied Microbiology, 2007, 102, 212-220.	3.1	17
39	Impacts of management on soil biota in Vertosols supporting the broadacre grains industry in northern Australia. Soil Research, 2006, 44, 433.	1.1	39
40	Atrazine degradation by encapsulated Rhodococcus erythropolis NI86/21. Journal of Applied Microbiology, 2005, 99, 767-775.	3.1	19
41	The relationship between concentration of a dual marker strain of Salmonella Typhimurium in bovine faeces and its probability of detection by immunomagnetic separation and culture. Journal of Applied Microbiology, 2004, 97, 1054-1062.	3.1	10
42	Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiology Letters, 2004, 240, 49-53.	1.8	53
43	Cloning vectors forStreptococcus thermophilusderived from a native plasmid. FEMS Microbiology Letters, 2002, 216, 43-47.	1.8	14
44	Selectable in-vivo recombination to increase antibody library size — an improved phage display vector system. Gene, 1999, 227, 49-54.	2.2	12
45	Isolation and characterization of Zymomonas mobilis DNA fragments acting as promoter transcriptional elements in Escherichia coli Journal of General and Applied Microbiology, 1994, 40, 541-549.	0.7	1
46	Characterization of a gene encoding a major .BETAendoglucanase from Xanthomonas albilineans Journal of General and Applied Microbiology, 1994, 40, 421-434.	0.7	0