Matthias Amrein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10900131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Corynebacterium tuberculostearicum</i> , a human skin colonizer, induces the canonical nuclear factorâ€i⁰B inflammatory signaling pathway in human skin cells. Immunity, Inflammation and Disease, 2020, 8, 62-79.	2.7	23
2	Patrolling Alveolar Macrophages Conceal Bacteria from the Immune System to Maintain Homeostasis. Cell, 2020, 183, 110-125.e11.	28.9	154
3	Beta3-Tubulin Is Critical for Microtubule Dynamics, Cell Cycle Regulation, and Spontaneous Release of Microvesicles in Human Malignant Melanoma Cells (A375). International Journal of Molecular Sciences, 2020, 21, 1656.	4.1	15
4	The Effects of Free Radicals on Pulmonary Surfactant Lipids and Proteins. , 2020, , 3-24.		0
5	Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nature Communications, 2018, 9, 751.	12.8	52
6	Surfactant Dysfunction in ARDS and Bronchiolitis is Repaired with Cyclodextrins. Military Medicine, 2018, 183, 207-215.	0.8	14
7	Dynamic and Irregular Distribution of RyR2 Clusters in the Periphery of Live Ventricular Myocytes. Biophysical Journal, 2018, 114, 343-354.	0.5	27
8	Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1040-1049.	2.4	10
9	Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nature Nanotechnology, 2017, 12, 701-710.	31.5	114
10	The role of multilayers in preventing the premature buckling of the pulmonary surfactant. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1372-1380.	2.6	16
11	Pulmonary surfactant dysfunction in pediatric cystic fibrosis: Mechanisms and reversal with a lipid-sequestering drug. Journal of Cystic Fibrosis, 2017, 16, 565-572.	0.7	23
12	Identification and treatment of the <i>Staphylococcus aureus</i> reservoir in vivo. Journal of Experimental Medicine, 2016, 213, 1141-1151.	8.5	178
13	CD36 Recruits α5β1 Integrin to Promote Cytoadherence of P. falciparum-Infected Erythrocytes. PLoS Pathogens, 2013, 9, e1003590.	4.7	21
14	Plasmodium falciparum â€induced CD36 clustering rapidly strengthens cytoadherence via p130CASâ€mediated actin cytoskeletal rearrangement. FASEB Journal, 2012, 26, 1119-1130.	0.5	28
15	Multiscale Experimental Study of Selective Blood-Cell Filtration in Fibrous Porous Media. Transport in Porous Media, 2012, 91, 913-926.	2.6	2
16	Effect of Cholesterol on Electrostatics in Lipidâ~'Protein Films of a Pulmonary Surfactant. Langmuir, 2010, 26, 1929-1935.	3.5	40
17	Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L117-L125.	2.9	65

18 Atomic Force Microscopy: Interaction Forces Measured in Phospholipid Monolayers, Bilayers, and Cell Membranes. , 2010, , 505-532.

1

MATTHIAS AMREIN

#	Article	IF	CITATIONS
19	The electrical surface potential of pulmonary surfactant. Frontiers in Bioscience - Landmark, 2009, Volume, 4337.	3.0	0
20	Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study. Ultramicroscopy, 2009, 109, 968-973.	1.9	23
21	Ultrastructure Imaging: Imaging and Probing the Structure and Molecular Make-Up of Cells and Tissues. , 2009, , 171-198.		0
22	Characteristics and impact of Taq enzyme adsorption on surfaces in microfluidic devices. Microfluidics and Nanofluidics, 2008, 4, 295-305.	2.2	28
23	Pulmonary Surfactant Self-Assembles into a Functional Film of Defined Molecular Architecture Irrespective of Concentration and Solvent of the Spreading Solution: A Fluorescence and Atomic Force Microscopy Study. Journal of Biomedical Nanotechnology, 2008, 4, 210-216.	1.1	4
24	Atomic Force Microscopy: Interaction Forces Measured in Phospholipid Monolayers, Bilayers and Cell Membranes. , 2008, , 207-234.		6
25	An Elevated Level of Cholesterol Impairs Self-Assembly of Pulmonary Surfactant into a Functional Film. Biophysical Journal, 2007, 93, 674-683.	0.5	89
26	The Molecular Mechanism of Monolayer-Bilayer Transformations of Lung Surfactant from Molecular Dynamics Simulations. Biophysical Journal, 2007, 93, 3775-3782.	0.5	97
27	Adhesive interaction measured between AFM probe and lung epithelial type II cells. Ultramicroscopy, 2007, 107, 948-953.	1.9	27
28	Electrical Surface Potential of Pulmonary Surfactant. Langmuir, 2006, 22, 10135-10139.	3.5	33
29	Effect of cholesterol on the physical properties of pulmonary surfactant films: Atomic force measurements study. Ultramicroscopy, 2006, 106, 687-694.	1.9	30
30	Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1737, 27-35.	2.4	106