Franco Cotelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10900025/publications.pdf

Version: 2024-02-01

58 papers	2,078 citations	26 h-index	243625 44 g-index
58	58	58	3329
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells, 2021, 10, 1233.	4.1	3
2	<i>NIPBL</i> : a new player in myeloid cell differentiation. Haematologica, 2019, 104, 1332-1341.	3. 5	22
3	SMYD3 promotes the epithelial–mesenchymal transition in breast cancer. Nucleic Acids Research, 2019, 47, 1278-1293.	14.5	63
4	Modeling Cornelia de Lange syndrome in vitro and in vivo reveals a role for cohesin complex in neuronal survival and differentiation. Human Molecular Genetics, 2019, 28, 64-73.	2.9	20
5	Zebrafish Tmem230a cooperates with the Delta/Notch signaling pathway to modulate endothelial cell number in angiogenic vessels. Journal of Cellular Physiology, 2018, 233, 1455-1467.	4.1	10
6	Sel1l knockdown negatively influences zebrafish embryos endothelium. Journal of Cellular Physiology, 2018, 233, 5396-5404.	4.1	2
7	Functional analysis of the cfdp1 gene in zebrafish provides evidence for its crucial role in craniofacial development and osteogenesis. Experimental Cell Research, 2017, 361, 236-245.	2.6	6
8	<i>In vivo</i> Functional Consequences of Human <i>THRA</i> Variants Expressed in the Zebrafish. Thyroid, 2017, 27, 279-291.	4.5	34
9	Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine, 2017, 57, 214-219.	2.3	81
10	Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos. Journal of Biomedical Optics, 2017, 22, 1.	2.6	2
11	CyclinD1 Downâ€Regulation and Increased Apoptosis Are Common Features of Cohesinopathies. Journal of Cellular Physiology, 2016, 231, 613-622.	4.1	16
12	Zebrafish as a Model to Investigate Dynamin 2-Related Diseases. Scientific Reports, 2016, 6, 20466.	3.3	20
13	Image Cross-Correlation Analysis of Time Varying Flows. Analytical Chemistry, 2016, 88, 7115-7122.	6.5	9
14	Patterns of thyroid hormone receptor expression in zebrafish and generation of a novel model of resistance to thyroid hormone action. Molecular and Cellular Endocrinology, 2016, 424, 102-117.	3.2	54
15	A zebrafish model of Poikiloderma with Neutropenia recapitulates the human syndrome hallmarks and traces back neutropenia to the myeloid progenitor. Scientific Reports, 2015, 5, 15814.	3.3	13
16	The Increase in Maternal Expression of <i>axin1</i> and <i>axin2</i> Contribute to the Zebrafish Mutant <i>Ichabod</i> Ventralized Phenotype. Journal of Cellular Biochemistry, 2015, 116, 418-430.	2.6	7
17	Quantitative measurement of blood velocity in zebrafish with optical vector field tomography. Journal of Biophotonics, 2015, 8, 52-59.	2.3	18
18	The Coiledâ€Coil Domain Containing 80 (<i>ccdc80</i>) Gene Regulates <i>gadd45β2</i> Expression in the Developing Somites of Zebrafish as a New Player of the <i>Hedgehog</i> Pathway. Journal of Cellular Physiology, 2015, 230, 821-830.	4.1	6

#	Article	IF	CITATIONS
19	Zebrafish as an innovative model for neuroendocrine tumors. Endocrine-Related Cancer, 2014, 21, R67-R83.	3.1	38
20	Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos. Journal of Biomedical Optics, 2014, 19, 067007.	2.6	10
21	In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation. Scientific Reports, 2014, 4, 7341.	3.3	21
22	FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation. Oncotarget, 2014, 5, 5712-5724.	1.8	12
23	Non Invasive Mapping of the Blood Velocity Field in Zebrafish with Optical Tomography. , 2014, , .		0
24	Binding of the repressor complex RESTâ€ <scp>mSIN</scp> 3b by small molecules restores neuronal gene transcription in Huntington's disease models. Journal of Neurochemistry, 2013, 127, 22-35.	3.9	44
25	Conserved and divergent functions of Nfix in skeletal muscle development during vertebrate evolution. Development (Cambridge), 2013, 140, 1528-1536.	2.5	22
26	Sox18 Genetically Interacts With VegfC to Regulate Lymphangiogenesis in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1238-1247.	2.4	38
27	The Synaptic Proteins \hat{l}^2 -Neurexin and Neuroligin Synergize With Extracellular Matrix-Binding Vascular Endothelial Growth Factor A During Zebrafish Vascular Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1563-1572.	2.4	24
28	An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nature Neuroscience, 2012, 15, 713-721.	14.8	99
29	ccdc80-l1 Is Involved in Axon Pathfinding of Zebrafish Motoneurons. PLoS ONE, 2012, 7, e31851.	2.5	11
30	Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures. PLoS ONE, 2012, 7, e50744.	2.5	32
31	Ve-ptp Modulates Vascular Integrity by Promoting Adherens Junction Maturation. PLoS ONE, 2012, 7, e51245.	2.5	17
32	Endothelial Fate and Angiogenic Properties of Human CD34+Progenitor Cells in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1589-1597.	2.4	30
33	Characterization of the neuroligin gene family expression and evolution in zebrafish. Developmental Dynamics, 2010, 239, 688-702.	1.8	19
34	Characterization of the APâ€1 μ1A and μ1B adaptins in zebrafish (<i>Danio rerio</i>). Developmental Dynamics, 2010, 239, 2404-2412.	1.8	18
35	Zebrafish Numb and Numblike Are Involved in Primitive Erythrocyte Differentiation. PLoS ONE, 2010, 5, e14296.	2.5	16
36	Stable Vascular Connections and Remodeling Require Full Expression of VE-Cadherin in Zebrafish Embryos. PLoS ONE, 2009, 4, e5772.	2.5	107

#	Article	IF	Citations
37	Induced early expression of (i) mrf4 (li) but not (i) myog (li) rescues myogenesis in the (i) myod/myf5 (li) double-morphant zebrafish embryo. Journal of Cell Science, 2009, 122, 481-488.	2.0	34
38	Crucial role of zebrafish prox1in hypothalamic catecholaminergic neurons development. BMC Developmental Biology, 2008, 8, 27.	2.1	33
39	Sox18 and Sox7 play redundant roles in vascular development. Blood, 2008, 111, 2657-2666.	1.4	179
40	Comparative Genome Analysis of the Neurexin Gene Family in Danio rerio: Insights into Their Functions and Evolution. Molecular Biology and Evolution, 2007, 24, 236-252.	8.9	38
41	Mammalian Tumor Xenografts Induce Neovascularization in Zebrafish Embryos. Cancer Research, 2007, 67, 2927-2931.	0.9	245
42	Regulated expression pattern of gremlin during zebrafish development. Gene Expression Patterns, 2005, 5, 539-544.	0.8	12
43	Identification and expression pattern of mago nashi during zebrafish development. Gene Expression Patterns, 2004, 5, 265-272.	0.8	11
44	Functional and hierarchical interactions among zebrafishvox/venthomeobox genes. Developmental Dynamics, 2004, 230, 494-508.	1.8	40
45	Ectopic expression and knockdown of a zebrafish sox21 reveal its role as a transcriptional repressor in early development. Mechanisms of Development, 2004, 121, 131-142.	1.7	38
46	Expression patterns of zebrafish sox11A, sox11B and sox21. Mechanisms of Development, 1999, 89, 167-171.	1.7	52
47	Intermediate filament proteins immunologically related to cytokeratins in the oocyte of the fish Cyprinus carpio. Zygote, 1997, 5, 207-212.	1.1	1
48	Structure and macromolecular composition of the zebrafish egg chorion. Zygote, 1996, 4, 101-108.	1.1	87
49	Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells. Molecular Reproduction and Development, 1993, 34, 133-139.	2.0	100
50	Identification and characterization of the major components of the Oncorhynchus mykiss Egg Chorion. Molecular Reproduction and Development, 1991, 28, 85-93.	2.0	67
51	Structure and composition of the fish egg chorion (Carassius auratus). Journal of Structural Biology, 1988, 99, 70-78.	0.8	54
52	Ultrastructure of the Spermatozoon of <i>Squilla mantis</i> . Acta Zoologica, 1983, 64, 131-137.	0.8	6
53	Differentiation of the vitelline coat in the ascidianCiona intestinalis: an ultrastructural study. Wilhelm Roux's Archives of Developmental Biology, 1981, 190, 252-258.	1.4	32
54	The Paraspermatic Cell (Atypical Spermatozoon) of Prosobranchia: A Comparative Ultrastructural Study. Acta Zoologica, 1980, 61, 191-201.	0.8	47

#	Article	IF	CITATION
55	The spermatozoon of peracarida. Journal of Ultrastructure Research, 1980, 73, 263-268.	1.1	7
56	Ductuli Efferentes in Two Cases of Testicular Agenesis. Journal of Developmental and Physical Disabilities, 1978, 1, 15-21.	3.6	1
57	Aspetti ultrastrutturali degli spermatozoi atipici in Scalidae (Gastropoda, Prosobranchia). Bollettino Di Zoologia, 1978, 45, 261-268.	0.3	16
58	The spermatozoon of peracarida. I. The spermatozoon of terrestrial isopods. Journal of Ultrastructure Research, 1976, 55, 378-390.	1.1	34