
Lishuang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10899057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacology in translation: the preclinical and early clinical profile of the novel α2/3 functionally selective GABA _A receptor positive allosteric modulator PFâ€06372865. British Journal of Pharmacology, 2018, 175, 708-725.	5.4	49
2	Molecular and functional variation in iPSC-derived sensory neurons. Nature Genetics, 2018, 50, 54-61.	21.4	191
3	Glâ€530159, a novel, selective, mechanosensitive twoâ€poreâ€domain potassium (K _{2P}) channel opener, reduces rat dorsal root ganglion neuron excitability. British Journal of Pharmacology, 2018, 175, 2272-2283.	5.4	40
4	Investigation of the structure activity relationship of flufenamic acid derivatives at the human TRESK channel K 2P 18.1. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4919-4924.	2.2	11
5	Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Science Translational Medicine, 2016, 8, 335ra56.	12.4	154
6	K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science, 2015, 347, 1256-1259.	12.6	255
7	Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research. Molecular Therapy, 2014, 22, 1530-1543.	8.2	127
8	Influence of the N Terminus on the Biophysical Properties and Pharmacology of TREK1 Potassium Channels. Molecular Pharmacology, 2014, 85, 671-681.	2.3	52
9	Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nature Biotechnology, 2012, 30, 715-720.	17.5	515
10	P2X receptor channels show threefold symmetry in ionic charge selectivity and unitary conductance. Nature Neuroscience, 2011, 14, 17-18.	14.8	45
11	The biophysical and molecular basis of TRPV1 proton gating. EMBO Journal, 2011, 30, 994-1002.	7.8	93
12	The Chimeric Approach Reveals That Differences in the TRPV1 Pore Domain Determine Species-specific Sensitivity to Block of Heat Activation. Journal of Biological Chemistry, 2011, 286, 39663-39672.	3.4	31
13	Polar Residues in the Second Transmembrane Domain of the Rat P2X2 Receptor That Affect Spontaneous Gating, Unitary Conductance, and Rectification. Journal of Neuroscience, 2009, 29, 14257-14264.	3.6	46
14	Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri. Journal of Biological Chemistry, 2008, 283, 15122-15126.	3.4	67
15	Role of the domain encompassing Arg304–lle328 in rat P2X2 receptor conformation revealed by alterations in complex glycosylation at Asn298. Biochemical Journal, 2008, 416, 137-143.	3.7	6
16	Thr339-to-Serine Substitution in Rat P2X2 Receptor Second Transmembrane Domain Causes Constitutive Opening and Indicates a Gating Role for Lys308. Journal of Neuroscience, 2007, 27, 12916-12923.	3.6	51
17	An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature, 2007, 448, 200-203.	27.8	130
18	Chronic exposure to EGF affects trafficking and function of ENaC channel in cystic fibrosis cells. Biochemical and Biophysical Research Communications, 2005, 331, 503-511.	2.1	12

#	Article	IF	CITATIONS
19	Rescue of functional ΔF508-CFTR channels by co-expression with truncated CFTR constructs in COS-1 cells. FEBS Letters, 2003, 554, 173-178.	2.8	15
20	Functional analysis of CFTR chloride channel activity in cells with elevated MDR1 expression. Biochemical and Biophysical Research Communications, 2003, 304, 248-252.	2.1	6