Abdelhak Djouadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10898136/publications.pdf

Version: 2024-02-01

48 papers

5,427 citations

218677 26 h-index 233421 45 g-index

48 all docs

48 docs citations

48 times ranked

6505 citing authors

#	Article	IF	CITATIONS
1	Higher-spin particles at high-energy colliders. Journal of High Energy Physics, 2021, 2021, 1.	4.7	7
2	A complete effective field theory for dark matter. Journal of High Energy Physics, 2021, 2021, 1.	4.7	17
3	The Higgs-portal for dark matter: effective field theories versus concrete realizations. European Physical Journal C, 2021, 81, 1.	3.9	21
4	Dark Matter through the Higgs portal. Physics Reports, 2020, 842, 1-180.	25.6	142
5	The Higgs-portal for vector dark matter and the effective field theory approach: A reappraisal. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 805, 135427.	4.1	22
6	Interference effects in $\$$ toverline $\{t\}$ $\$$ production at the LHC as a window on new physics. Journal of High Energy Physics, 2019, 2019, 1.	4.7	19
7	HDECAY: Twenty++ years after. Computer Physics Communications, 2019, 238, 214-231.	7. 5	99
8	Enhanced rates for diphoton resonances in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 765, 175-180.	4.1	2
9	Perspectives for Higgs and New Physics. EPJ Web of Conferences, 2016, 126, 02010.	0.3	O
10	Scenarii for interpretations of the LHC diphoton excess: Two Higgs doublets and vector-like quarks and leptons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 756, 126-132.	4.1	128
11	The LHC diphoton resonance and dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 755, 426-432.	4.1	111
12	Prospects for Higgs physics at energies up to 100 TeV. Reports on Progress in Physics, 2016, 79, 116201.	20.1	26
13	Threshold enhancement of diphoton resonances. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 761, 8-15.	4.1	9
14	Interference effects in the decays of spin-zero resonances into $\hat{I}^3\hat{I}^3$ and t t \hat{A}^- \$\$ toverline{t} \$\$. Journal of High Energy Physics, 2016, 2016, 1.	4.7	23
15	Into the multi-TeV scale with a Higgs golden ratio. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 412-419.	4.1	12
16	Future collider signatures of the possible 750 GeV state. Journal of High Energy Physics, 2016, 2016, 1.	4.7	30
17	Implications of the Higgs discovery for the MSSM. European Physical Journal C, 2014, 74, 2704.	3.9	25
18	Precision Higgs coupling measurements at the LHC through ratios of production cross sections. European Physical Journal C, 2013, 73, 1.	3.9	52

#	Article	IF	Citations
19	Direct detection of Higgs–portal dark matter at the LHC. European Physical Journal C, 2013, 73, 1.	3.9	192
20	The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7+8 TeV LHC. European Physical Journal C, 2013, 73, 1.	3.9	70
21	The MSSM Higgs sector at a high MSUSY: reopening the low tan \hat{I}^2 regime and heavy Higgs searches. Journal of High Energy Physics, 2013, 2013, 1.	4.7	69
22	An update of the constraints on the phenomenological MSSM from the new LHC Higgs results. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 720, 153-160.	4.1	86
23	Implications of the Higgs discovery for SUSY. Journal of Physics: Conference Series, 2013, 447, 012002.	0.4	2
24	Sealing the fate of a fourth generation of fermions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 715, 310-314.	4.1	91
25	Higgs physics: Theory. Pramana - Journal of Physics, 2012, 79, 513-539.	1.8	2
26	Implications of LHC searches for Higgs-portal dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 709, 65-69.	4.1	363
27	Higgs production at the IHC. Journal of High Energy Physics, 2011, 2011, 1.	4.7	124
28	Revisiting the constraints on the supersymmetric Higgs sector at the Tevatron. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 699, 372-376.	4.1	2
29	Predictions for Higgs production at the Tevatron and the associated uncertainties. Journal of High Energy Physics, 2010, 2010, 1.	4.7	87
30	The Higgs sector of supersymmetric theories and the implications for high-energy colliders. European Physical Journal C, 2009, 59, 389.	3.9	12
31	The Higgs Mechanism and the Origin of Mass. , 2009, , 1-23.		1
32	Electroweak Symmetry Breaking at the LHC., 2009,, 47-74.		1
33	The anatomy of electroweak symmetry breaking Tome II: The Higgs bosons in the Minimal Supersymmetric Model. Physics Reports, 2008, 459, 1-241.	25.6	937
34	The anatomy of electroweak symmetry breaking. Physics Reports, 2008, 457, 1-216.	25.6	796
35	The MSSM with heavy scalars. Journal of High Energy Physics, 2007, 2007, 016-016.	4.7	65
36	SuSpect: A Fortran code for the Supersymmetric and Higgs particle spectrum in the MSSM. Computer Physics Communications, 2007, 176, 426-455.	7.5	641

#	Article	IF	CITATION
37	The Higgs intense-coupling regime in constrained SUSY models and its astrophysical implications. Journal of High Energy Physics, 2006, 2006, 001-001.	4.7	12
38	Neutralino dark matter in mSUGRA: Reopening the light Higgs pole window. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 624, 60-69.	4.1	63
39	Z â $€^2$ studies at the LHC: an update. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 583, 111-120.	4.1	109
40	NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 579, 149-156.	4.1	283
41	PDF uncertainties in Higgs production at hadron colliders. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 586, 345-352.	4.1	23
42	Detection of MSSM Higgs bosons from supersymmetric particle cascade decays at the LHC. Nuclear Physics B, 2004, 681, 31-64.	2.5	46
43	Minimal supersymmetric standard model Higgs bosons in the intense-coupling regime. Physical Review D, 2002, 66, .	4.7	45
44	Constraints on the minimal supergravity model and prospects for SUSY particle production at future linear e+eâ^' colliders. Journal of High Energy Physics, 2001, 2001, 055-055.	4.7	185
45	Charged Higgs boson production from supersymmetric particle cascade decays at the CERN LHC. Physical Review D, 2001, 65, .	4.7	29
46	Light scalar top quarks and supersymmetric dark matter. Physical Review D, 2000, 62, .	4.7	204
47	Squark effects on Higgs boson production and decay at the LHC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 435, 101-108.	4.1	119
48	Higgs boson decays into light gravitinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 1997, 407, 243-249.	4.1	23