
John C Lawrence Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10897354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 2001, 3, 1014-1019.	10.3	2,153
2	Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature, 1994, 371, 762-767.	27.8	1,192
3	Phosphorylation of the Translational Repressor PHAS-I by the Mammalian Target of Rapamycin. Science, 1997, 277, 99-101.	12.6	896
4	Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metabolism, 2006, 4, 199-210.	16.2	481
5	PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding. Journal of Biological Chemistry, 2007, 282, 20036-20044.	3.4	404
6	Construction and Characterization of a Conditionally Active Version of the Serine/Threonine Kinase Akt. Journal of Biological Chemistry, 1998, 273, 11937-11943.	3.4	281
7	Fat Cell–Specific Ablation of <i>Rictor</i> in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism. Diabetes, 2010, 59, 1397-1406.	0.6	238
8	Control of PHAS-I by Insulin in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1995, 270, 18531-18538.	3.4	234
9	Control of Ser2448 Phosphorylation in the Mammalian Target of Rapamycin by Insulin and Skeletal Muscle Load. Journal of Biological Chemistry, 2002, 277, 17657-17662.	3.4	234
10	TOR Signaling. Science Signaling, 2003, 2003, re15.	3.6	231
11	Branched-chain Amino Acids Are Essential in the Regulation of PHAS-I and p70 S6 Kinase by Pancreatic β-Cells. Journal of Biological Chemistry, 1998, 273, 28178-28184.	3.4	218
12	Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1047-1052.	7.1	206
13	Insulin Controls Subcellular Localization and Multisite Phosphorylation of the Phosphatidic Acid Phosphatase, Lipin 1. Journal of Biological Chemistry, 2007, 282, 277-286.	3.4	190
14	Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase Activity. Molecular and Cellular Biology, 2008, 28, 61-70.	2.3	188
15	Multiple Mechanisms Control Phosphorylation of PHAS-I in Five (S/T)P Sites That Govern Translational Repression. Molecular and Cellular Biology, 2000, 20, 3558-3567.	2.3	181
16	Identification of Phosphorylation Sites in the Translational Regulator, PHAS-I, That Are Controlled by Insulin and Rapamycin in Rat Adipocytes. Journal of Biological Chemistry, 1997, 272, 10240-10247.	3.4	167
17	Studies on the Mechanism of Resistance to Rapamycin in Human Cancer Cells. Molecular Pharmacology, 1998, 54, 815-824.	2.3	162
18	The Mammalian Target of Rapamycin Phosphorylates Sites Having a (Ser/Thr)-Pro Motif and Is Activated by Antibodies to a Region near Its COOH Terminus. Journal of Biological Chemistry, 1997, 272, 32547-32550.	3.4	157

JOHN C LAWRENCE JR

#	Article	IF	CITATIONS
19	Regulation of Proline-rich Akt Substrate of 40 kDa (PRAS40) Function by Mammalian Target of Rapamycin Complex 1 (mTORC1)-mediated Phosphorylation. Journal of Biological Chemistry, 2008, 283, 15619-15627.	3.4	157
20	A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6596-6601.	7.1	145
21	Insulin Control of Glycogen Metabolism in Knockout Mice Lacking the Muscle-Specific Protein Phosphatase PP1G/R GL. Molecular and Cellular Biology, 2001, 21, 2683-2694.	2.3	142
22	Insulin Receptor Substrate-2 Proteasomal Degradation Mediated by a Mammalian Target of Rapamycin (mTOR)-induced Negative Feedback Down-regulates Protein Kinase B-mediated Signaling Pathway in β-Cells. Journal of Biological Chemistry, 2005, 280, 2282-2293.	3.4	130
23	Mammalian Target of Rapamycin-dependent Phosphorylation of PHAS-I in Four (S/T)P Sites Detected by Phospho-specific Antibodies. Journal of Biological Chemistry, 2000, 275, 33836-33843.	3.4	121
24	mTOR-dependent stimulation of the association of elF4G and elF3 by insulin. EMBO Journal, 2006, 25, 1659-1668.	7.8	116
25	Lipin 1 Represses NFATc4 Transcriptional Activity in Adipocytes To Inhibit Secretion of Inflammatory Factors. Molecular and Cellular Biology, 2010, 30, 3126-3139.	2.3	105
26	Two Motifs in the Translational Repressor PHAS-I Required for Efficient Phosphorylation by Mammalian Target of Rapamycin and for Recognition by Raptor. Journal of Biological Chemistry, 2003, 278, 19667-19673.	3.4	102
27	Insulin Mediates Glucose-stimulated Phosphorylation of PHAS-I by Pancreatic Beta Cells. Journal of Biological Chemistry, 1998, 273, 4485-4491.	3.4	101
28	Mammalian Target of Rapamycin Complex 1 (mTORC1) Activity Is Associated with Phosphorylation of Raptor by mTOR. Journal of Biological Chemistry, 2009, 284, 14693-14697.	3.4	100
29	The Rapamycin-Binding Domain Coverns Substrate Selectivity by the Mammalian Target of Rapamycin. Molecular and Cellular Biology, 2002, 22, 7428-7438.	2.3	99
30	Activation of Mammalian Target of Rapamycin (mTOR) by Insulin Is Associated with Stimulation of 4EBP1 Binding to Dimeric mTOR Complex 1. Journal of Biological Chemistry, 2006, 281, 24293-24303.	3.4	97
31	Control of the Translational Regulators PHAS-I and PHAS-II by Insulin and cAMP in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1996, 271, 30199-30204.	3.4	93
32	Alterations in Hepatic Metabolism in <i>fld</i> Mice Reveal a Role for Lipin 1 in Regulating VLDL-Triacylglyceride Secretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1738-1744.	2.4	80
33	Attenuation of Mammalian Target of Rapamycin Activity by Increased cAMP in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1998, 273, 34496-34501.	3.4	78
34	Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB Journal, 2004, 18, 1894-1896.	0.5	75
35	Phas proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. Advances in Enzyme Regulation, 1997, 37, 239-267.	2.6	63
36	Farnesylthiosalicylic Acid Inhibits Mammalian Target of Rapamycin (mTOR) Activity Both in Cells andin Vitroby Promoting Dissociation of the mTOR-Raptor Complex. Molecular Endocrinology, 2005, 19, 175-183.	3.7	55

JOHN C LAWRENCE JR

#	Article	IF	CITATIONS
37	Control of glycogen synthesis is shared between glucose transport and glycogen synthase in skeletal muscle fibers. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E234-E243.	3.5	50
38	Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR. FEBS Letters, 1999, 453, 387-390.	2.8	47
39	In Rat Hepatocytes Glucagon Increases Mammalian Target of Rapamycin Phosphorylation on Serine 2448 but Antagonizes the Phosphorylation of Its Downstream Targets Induced by Insulin and Amino Acids. Journal of Biological Chemistry, 2004, 279, 42628-42637.	3.4	45
40	Insulin, growth factors, and cAMP. Trends in Endocrinology and Metabolism, 1996, 7, 43-50.	7.1	40
41	Disruption of the Gene Encoding the Mitogen-regulated Translational Modulator PHAS-I in Mice. Journal of Biological Chemistry, 1997, 272, 31510-31514.	3.4	31
42	Ser-64 and Ser-111 in PHAS-I Are Dispensable for Insulin-stimulated Dissociation from eIF4E. Journal of Biological Chemistry, 2003, 278, 47459-47465.	3.4	29
43	Insulin Signaling and the Control of PHAS-I Phosphorylation. Progress in Molecular and Subcellular Biology, 2001, 26, 1-31.	1.6	25
44	mTOR-Dependent Control of Skeletal Muscle Protein Synthesis. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, S177-S185.	2.1	24
45	Insulin activates a PD 098059-sensitive kinase that is involved in the regulation of p70S6Kand PHAS-I. FEBS Letters, 1997, 409, 171-176.	2.8	23
46	Inhibitor-1 Is Not Required for the Activation of Glycogen Synthase by Insulin in Skeletal Muscle. Journal of Biological Chemistry, 1999, 274, 20949-20952.	3.4	15
47	Effects of Insulin and Transgenic Overexpression of UDP-glucose Pyrophosphorylase on UDP-glucose and Glycogen Accumulation in Skeletal Muscle Fibers. Journal of Biological Chemistry, 2005, 280, 5510-5515.	3.4	15
48	Phosphorylation of the translational regulator, PHAS-I, by protein kinase CK2. FEBS Letters, 1998, 435, 105-109.	2.8	14
49	Glycogen synthase in rat adipocytes and skeletal muscle is phosphorylated on both serine and threonine. FEBS Letters, 1984, 175, 55-58.	2.8	12
50	Rat skeletal muscle glycogen synthase: Phosphorylation of the purified enzyme by cAMP-dependent and -independent protein kinases. Archives of Biochemistry and Biophysics, 1985, 236, 59-71.	3.0	9
51	Insulin- and phorbol-ester-induced phosphorylation of a rat adipocyte phosphoprotein which binds calmodulin only in the absence of calcium. Biochemical Society Transactions, 1989, 17, 108-109.	3.4	2

52 Control of Protein Synthesis by Insulin. , 2007, , 71-89.