
David P Basile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10897161/publications.pdf Version: 2024-02-01

DAVID P RASHE

#	Article	IF	CITATIONS
1	Orai1: A New Therapeutic Target for the Acute Kidney Injury-to-Chronic Kidney Disease Transition. Nephron, 2022, 146, 264-267.	0.9	2
2	Regeneration and replacement of endothelial cells and renal vascular repair. , 2022, , 129-144.		1
3	Macrophage dynamics in kidney repair: elucidation of a COX-2–dependent MafB pathway to affect macrophage differentiation. Kidney International, 2022, 101, 15-18.	2.6	4
4	Serum IL-17 levels are higher in critically ill patients with AKI and associated with worse outcomes. Critical Care, 2022, 26, 107.	2.5	4
5	Oxidative Stress and Inflammation Contribute to Kidney Injury Risk During Prolonged Passive Extreme Heat Exposure. FASEB Journal, 2022, 36, .	0.2	1
6	Kidney injury risk during prolonged exposure to current and projected wet bulb temperatures occurring during extreme heat events in healthy young men. Journal of Applied Physiology, 2022, 133, 27-40.	1.2	6
7	Crystals or His(stones): Rethinking AKI in Tumor Lysis Syndrome. Journal of the American Society of Nephrology: JASN, 2022, 33, 1055-1057.	3.0	1
8	T helper 17 cells in the pathophysiology of acute and chronic kidney disease. Kidney Research and Clinical Practice, 2021, 40, 12-28.	0.9	12
9	Contribution of Th17 cells to tissue injury in hypertension. Current Opinion in Nephrology and Hypertension, 2021, 30, 151-158.	1.0	10
10	Pathogenesis of Acute Kidney Injury. , 2021, , 1-38.		0
11	Mutation of RORÎ ³ T reveals a role for Th17 cells in both injury and recovery from renal ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2020, 319, F796-F808.	1.3	12
12	The case for capillary rarefaction in the AKI to CKD progression: insights from multiple injury models. American Journal of Physiology - Renal Physiology, 2019, 317, F1253-F1254.	1.3	7
13	Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Seminars in Nephrology, 2019, 39, 567-580.	0.6	47
14	Calcium channel Orai1 promotes lymphocyte IL-17 expression and progressive kidney injury. Journal of Clinical Investigation, 2019, 129, 4951-4961.	3.9	40
15	Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection. Journal of the American Society of Nephrology: JASN, 2018, 29, 1154-1164.	3.0	29
16	Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R265-R273.	0.9	22
17	Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. Journal of the American Society of Nephrology: JASN, 2017, 28, 2081-2092.	3.0	31
18	IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. American Journal of Physiology - Renal Physiology, 2017, 312, F385-F397.	1.3	68

DAVID P BASILE

#	Article	IF	CITATIONS
19	Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury. Journal of Cellular and Molecular Medicine, 2017, 21, 1420-1430.	1.6	19
20	Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2017, 312, F897-F907.	1.3	42
21	Surprising Enhancement of Fibrosis by Tubule-Specific Deletion of the TGF-Î ² Receptor: A New Twist on an Old Paradigm. Journal of the American Society of Nephrology: JASN, 2017, 28, 3427-3429.	3.0	4
22	Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury. Physiological Reports, 2016, 4, e12829.	0.7	39
23	Progression after AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 687-697.	3.0	351
24	Pathogenesis of Acute Kidney Injury. , 2016, , 2101-2138.		2
25	Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney International, 2015, 88, 776-784.	2.6	84
26	Effect of Renal Shock Wave Lithotripsy on the Development of Metabolic Syndrome in a Juvenile Swine Model: A Pilot Study. Journal of Urology, 2015, 193, 1409-1416.	0.2	8
27	Renal Endothelial Dysfunction in Acute Kidney Ischemia Reperfusion Injury. Cardiovascular & Hematological Disorders Drug Targets, 2014, 14, 3-14.	0.2	112
28	Pathogenesis of Acute Kidney Injury. , 2014, , 1-45.		0
29	Circulating and tissue resident endothelial progenitor cells. Journal of Cellular Physiology, 2013, 229, n/a-n/a.	2.0	173
30	A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. American Journal of Physiology - Renal Physiology, 2013, 304, F1217-F1229.	1.3	46
31	Getting the "Inside―Scoop on EphrinB2 Signaling in Pericytes and the Effect on Peritubular Capillary Stability. Journal of the American Society of Nephrology: JASN, 2013, 24, 521-523.	3.0	4
32	Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats. Kidney International, 2013, 83, 242-250.	2.6	21
33	Distinct effects on long-term function of injured and contralateral kidneys following unilateral renal ischemia-reperfusion. American Journal of Physiology - Renal Physiology, 2012, 302, F625-F635.	1.3	41
34	Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity. American Journal of Physiology - Renal Physiology, 2012, 302, F1494-F1502.	1.3	67
35	Activated Pericytes and the Inhibition of Renal Vascular Stability: Obstacles for Kidney Repair. Journal of the American Society of Nephrology: JASN, 2012, 23, 767-769.	3.0	6
36	Low Proliferative Potential and Impaired Angiogenesis of Cultured Rat Kidney Endothelial Cells. Microcirculation, 2012, 19, 598-609.	1.0	18

DAVID P BASILE

#	Article	IF	CITATIONS
37	Pathophysiology of Acute Kidney Injury. , 2012, 2, 1303-1353.		801
38	A GAP in our knowledge of vascular signaling in acute kidney injury. Kidney International, 2011, 80, 233-235.	2.6	0
39	Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. American Journal of Physiology - Renal Physiology, 2011, 300, F721-F733.	1.3	249
40	Increased ANG II sensitivity following recovery from acute kidney injury: role of oxidant stress in skeletal muscle resistance arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1682-R1691.	0.9	19
41	Expression of the RNA-stabilizing protein HuR in ischemia-reperfusion injury of rat kidney. American Journal of Physiology - Renal Physiology, 2009, 297, F95-F105.	1.3	32
42	Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1358-R1363.	0.9	73
43	VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. American Journal of Physiology - Renal Physiology, 2008, 295, F1648-F1657.	1.3	143
44	Immune suppression blocks sodium-sensitive hypertension following recovery from ischemic acute renal failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1234-R1239.	0.9	58
45	Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. American Journal of Physiology - Renal Physiology, 2008, 294, F928-F936.	1.3	154
46	Challenges of targeting vascular stability in acute kidney injury. Kidney International, 2008, 74, 257-258.	2.6	7
47	An expanding role of Toll-like receptors in sepsis-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2008, 294, F1048-F1049.	1.3	7
48	Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. American Journal of Physiology - Renal Physiology, 2007, 293, F269-F278.	1.3	100
49	Novel Approaches in the Investigation of Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2007, 18, 7-9.	3.0	6
50	Immune suppression blocks sodium sensitive hypertension following recovery from ischemic acute renal failure. FASEB Journal, 2007, 21, A591.	0.2	0
51	Impaired sodium excretion following recovery from ischemic acute renal failure. FASEB Journal, 2006, 20, A341.	0.2	0
52	Transcriptome analysis and kidney research: Toward systems biology. Kidney International, 2005, 67, 2114-2122.	2.6	25
53	Enhanced skeletal muscle arteriolar reactivity to ANG II after recovery from ischemic acute renal failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1770-R1776.	0.9	15
54	Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. American Journal of Physiology - Renal Physiology, 2005, 288, F953-F963.	1.3	86

DAVID P BASILE

#	Article	IF	CITATIONS
55	Transforming growth factor-β in acute renal failure: receptor expression, effects on proliferation, cellularity, and vascularization after recovery from injury. American Journal of Physiology - Renal Physiology, 2005, 288, F568-F577.	1.3	90
56	Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. American Journal of Physiology - Renal Physiology, 2004, 286, F893-F902.	1.3	110
57	Resistance to ischemic acute renal failure in the Brown Norway rat: A new model to study cytoprotection. Kidney International, 2004, 65, 2201-2211.	2.6	47
58	Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Current Opinion in Nephrology and Hypertension, 2004, 13, 1-7.	1.0	202
59	Chronic renal hypoxia after acute ischemic injury: effects of <scp>l</scp> -arginine on hypoxia and secondary damage. American Journal of Physiology - Renal Physiology, 2003, 284, F338-F348.	1.3	134
60	Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American Journal of Physiology - Renal Fluid and Electrolyte Physiology, 2001, 281, F887-F899.	0.0	248
61	Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American Journal of Physiology - Renal Physiology, 2001, 281, F887-F899.	1.3	426
62	Transforming growth factor-β as a target for treatment in diabetic nephropathy. American Journal of Kidney Diseases, 2001, 38, 887-890.	2.1	16
63	Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American Journal of Physiology - Renal Physiology, 2001, 281, F887-F899.	1.3	340
64	Toward an effective gene therapy in renal disease. Kidney International, 1999, 55, 740-741.	2.6	1
65	The transforming growth factor beta system in kidney disease and repair: recent progress and future directions. Current Opinion in Nephrology and Hypertension, 1999, 8, 21-30.	1.0	106
66	Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-β in repair. American Journal of Physiology - Renal Physiology, 1998, 275, F894-F903.	1.3	47