Paola Oliva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10897142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Synthesis, and Biological Evaluation of 6-Substituted Thieno[3,2- <i>d</i>]pyrimidine Analogues as Dual Epidermal Growth Factor Receptor Kinase and Microtubule Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 1274-1290.	6.4	33
2	Design and Synthesis of Potent in Vitro and in Vivo Anticancer Agents Based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole. Scientific Reports, 2016, 6, 26602.	3.3	29
3	Design, synthesis, inÂvitro and inÂvivo biological evaluation of 2-amino-3-aroylbenzo[b]furan derivatives as highly potent tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2020, 200, 112448.	5.5	25
4	Synthesis and Biological Evaluation of 2-Methyl-4,5-Disubstituted Oxazoles as a Novel Class of Highly Potent Antitubulin Agents. Scientific Reports, 2017, 7, 46356.	3.3	17
5	Design, synthesis and biological evaluation of 2-alkoxycarbonyl-3-anilinoindoles as a new class of potent inhibitors of tubulin polymerization. Bioorganic Chemistry, 2020, 97, 103665.	4.1	16
6	2-Alkoxycarbonyl-3-arylamino-5-substituted thiophenes as a novel class of antimicrotubule agents: Design, synthesis, cell growth and tubulin polymerization inhibition. European Journal of Medicinal Chemistry, 2018, 143, 683-698.	5.5	15
7	The Novel Antitubulin Agent TR-764 Strongly Reduces Tumor Vasculature and Inhibits HIF-1α Activation. Scientific Reports, 2016, 6, 27886.	3.3	13
8	Synthesis and Biological Evaluation of New Antitubulin Agents Containing 2-(3′,4′,5′-trimethoxyanilino)-3,6-disubstituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridine Scaffold. Molecules, 2020, 25, 1690.	3.8	11
9	Synergistic Effects of A Combined Treatment of Glioblastoma U251 Cells with An Anti-miR-10b-5p Molecule and An AntiCancer Agent Based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole Scaffold. International Journal of Molecular Sciences, 2022, 23, 5991.	4.1	9
10	Synergistic effects of the combined treatment of U251 and T98G glioma cells with an anti‑tubulin tetrahydrothieno[2,3‑c]pyridine derivative and a peptide nucleic acid targeting miR‑221‑3p. International Journal of Oncology, 2021, 59, .	3.3	7
11	Synthesis and Biological Evaluation of Highly Active 7-Anilino Triazolopyrimidines as Potent Antimicrotubule Agents. Pharmaceutics, 2022, 14, 1191.	4.5	7
12	Structure-activity relationships of pyrimidine nucleotides containing a 5′-α,β-methylene diphosphonate at the P2Y6 receptor. Bioorganic and Medicinal Chemistry Letters, 2021, 45, 128137.	2.2	6
13	Structure–Activity Relationship of 3-Methylcytidine-5′-α,β-methylenediphosphates as CD73 Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2409-2433.	6.4	5