Donghui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10897130/publications.pdf

Version: 2024-02-01

18115 18465 15,884 187 62 120 citations h-index g-index papers 191 191 191 21216 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dietary Intake of Fatty Acids and Risk of Pancreatic Cancer: A Case-Control Study. Journal of Nutrition, 2022, 152, 439-447.	1.3	2
2	Metabolomics study reveals systematic metabolic dysregulation and early detection markers associated with incident pancreatic cancer. International Journal of Cancer, 2022, 150, 1091-1100.	2.3	12
3	A whole-exome case-control association study to characterize the contribution of rare coding variation to pancreatic cancer risk. Human Genetics and Genomics Advances, 2022, 3, 100078.	1.0	О
4	Identification of novel susceptibility methylation loci for pancreatic cancer in a two-phase epigenome-wide association study. Epigenetics, 2022, 17, 1357-1372.	1.3	4
5	HepatoScoreâ€14: Measures of Biological Heterogeneity Significantly Improve Prediction of Hepatocellular Carcinoma Risk. Hepatology, 2021, 73, 2278-2292.	3.6	10
6	Population-based targeted sequencing of 54 candidate genes identifies <i>PALB2 </i> as a susceptibility gene for high-grade serous ovarian cancer. Journal of Medical Genetics, 2021, 58, 305-313.	1.5	26
7	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	3.6	15
8	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.4	8
9	Dietary Patterns and Hepatocellular Carcinoma Risk among US Adults. Nutrients, 2021, 13, 2011.	1.7	8
10	Dietary Nâ€Nitroso Compounds and Risk of Hepatocellular Carcinoma: A USAâ€Based Study. Hepatology, 2021, 74, 3161-3173.	3.6	10
11	Large-scale cross-cancer fine-mapping of the $5p15.33$ region reveals multiple independent signals. Human Genetics and Genomics Advances, 2021 , 2 , 100041 .	1.0	6
12	A 584Âbp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. American Journal of Human Genetics, 2021, 108, 1852-1865.	2.6	15
13	Association of dietary fat intake and hepatocellular carcinoma among US adults. Cancer Medicine, 2021, 10, 7308-7319.	1.3	6
14	Association of Serum Bile Acids Profile and Pathway Dysregulation With the Risk of Developing Diabetes Among Normoglycemic Chinese Adults: Findings From the 4C Study. Diabetes Care, 2021, 44, 499-510.	4.3	40
15	Association Between Age at Diagnosis of Type 2 Diabetes and Cardiovascular Diseases: A Nationwide, Population-Based, Cohort Study. Frontiers in Endocrinology, 2021, 12, 717069.	1.5	14
16	Association between birth weight and diabetes: Role of body mass index and lifestyle in later life. Journal of Diabetes, 2020, 12, 10-20.	0.8	12
17	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	3.0	59
18	Incorporating multiple sets of eQTL weights into geneâ€byâ€environment interaction analysis identifies novel susceptibility loci for pancreatic cancer. Genetic Epidemiology, 2020, 44, 880-892.	0.6	0

#	Article	IF	CITATIONS
19	Bayesian copy number detection and association in large-scale studies. BMC Cancer, 2020, 20, 856.	1.1	О
20	Early Life Famine Exposure, Ideal Cardiovascular Health Metrics, and Risk of Incident Diabetes: Findings From the 4C Study. Diabetes Care, 2020, 43, 1902-1909.	4.3	36
21	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	1.1	5
22	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.4	5
23	Association of bedtime with the risk of nonâ€alcoholic fatty liver disease among middleâ€aged and elderly Chinese adults with preâ€diabetes and diabetes. Diabetes/Metabolism Research and Reviews, 2020, 36, e3322.	1.7	11
24	Earlyâ€Life Famine Exposure and Risk of Cardiovascular Diseases in Later Life: Findings From the REACTION Study. Journal of the American Heart Association, 2020, 9, e014175.	1.6	40
25	Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1501-1508.	1.1	18
26	Ideal Cardiovascular Health Metrics and Major Cardiovascular Events in Patients With Prediabetes and Diabetes. JAMA Cardiology, 2019, 4, 874.	3.0	70
27	A GPC1-targeted and gemcitabine-loaded biocompatible nanoplatform for pancreatic cancer multimodal imaging and therapy. Nanomedicine, 2019, 14, 2339-2353.	1.7	15
28	Predictive Value of Fasting Glucose, Postload Glucose, and Hemoglobin A1c on Risk of Diabetes and Complications in Chinese Adults. Diabetes Care, 2019, 42, 1539-1548.	4.3	102
29	Vitamin C and Vitamin E Mitigate the Risk of Pancreatic Ductal Adenocarcinoma from Meat-Derived Mutagen Exposure in Adults in a Case-Control Study. Journal of Nutrition, 2019, 149, 1443-1450.	1.3	9
30	Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1238-1245.	1.1	48
31	Resting heart rate is associated with metabolic syndrome and predicted 10â€year risk of cardiovascular disease: a crossâ€sectional study. Journal of Diabetes, 2019, 11, 884-894.	0.8	19
32	Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 557-567.	3.0	21
33	Dietary N-nitroso compounds and risk of pancreatic cancer: results from a large case–control study. Carcinogenesis, 2019, 40, 254-262.	1.3	25
34	A powerful and dataâ€adaptive test for rareâ€variant–based geneâ€environment interaction analysis. Statistics in Medicine, 2019, 38, 1230-1244.	0.8	15
35	Serum apolipoprotein B is associated with increased risk of metabolic syndrome among middleâ€aged and elderly Chinese: A crossâ€sectional and prospective cohort study. Journal of Diabetes, 2019, 11, 752-760.	0.8	11
36	The Association of Recently Diagnosed Diabetes and Long-term Diabetes With Survival in Pancreatic Cancer Patients. Pancreas, 2018, 47, 314-320.	0.5	14

#	Article	IF	CITATIONS
37	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	5.8	188
38	Plectin-1 Targeted Dual-modality Nanoparticles for Pancreatic Cancer Imaging. EBioMedicine, 2018, 30, 129-137.	2.7	41
39	Association between smoking and glycemic control in diabetic patients: <scp>R</scp> esults from the <scp>R</scp> isk <scp>E</scp> valuation of c <scp>A</scp> ncers in <scp>C</scp> hinese diabe <scp>T</scp> ic <scp>I</scp> ndividuals: <scp>A</scp> I <scp>ON</scp> gitudinal (<scp>REACTION</scp>) study, lournal of Diabetes, 2018, 10, 408-418.	0.8	24
40	Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. Carcinogenesis, 2018, 39, 1056-1067.	1.3	23
41	<i>CDKN2A</i> Germline Rare Coding Variants and Risk of Pancreatic Cancer in Minority Populations. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1364-1370.	1.1	23
42	Age at menarche is associated with the prevalence of nonâ€alcoholic fatty liver disease later in life. Journal of Diabetes, 2017, 9, 53-60.	0.8	24
43	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	3.4	376
44	Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes, 2017, 66, 1103-1110.	0.3	311
45	Genetic polymorphisms associated with pancreatic cancer survival: a genomeâ€wide association study. International Journal of Cancer, 2017, 141, 678-686.	2.3	23
46	Estrogen Replacement Reduces Risk and Increases Survival Times of Women With Hepatocellular Carcinoma. Clinical Gastroenterology and Hepatology, 2017, 15, 1791-1799.	2.4	76
47	Effect of <i>NR5A2</i> inhibition on pancreatic cancer stem cell (CSC) properties and epithelialâ€mesenchymal transition (EMT) markers. Molecular Carcinogenesis, 2017, 56, 1438-1448.	1.3	38
48	Glycemic status and chronic kidney disease in <scp>C</scp> hinese adults: <scp>F</scp> indings from the <scp>REACTION</scp> study. Journal of Diabetes, 2017, 9, 837-845.	0.8	6
49	RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer. Oncotarget, 2017, 8, 42537-42547.	0.8	46
50	Association between the job types and the risk of hepatocellular carcinoma in the United States. Journal of Epidemiological Research, 2016, 3, .	0.6	1
51	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	0.8	88
52	Menstrual and Reproductive Factors, Hormone Use, and Risk of Pancreatic Cancer. Pancreas, 2016, 45, 1401-1410.	0.5	10
53	Association between the change in body mass index from early adulthood to midlife and subsequent type 2 diabetes mellitus. Obesity, 2016, 24, 703-709.	1.5	13
54	RECQ1 A159C Polymorphism Is Associated WithÂOverall Survival of Patients With Resected Pancreatic Cancer: A Replication Study in NRGÂOncology Radiation Therapy Oncology GroupÂ9704. International Journal of Radiation Oncology Biology Physics, 2016, 94, 554-560.	0.4	11

#	Article	IF	Citations
55	Reduced Kidney Function Is Associated With Cardiometabolic Risk Factors, Prevalent and Predicted Risk of Cardiovascular Disease in Chinese Adults: Results From the REACTION Study. Journal of the American Heart Association, 2016, 5, .	1.6	26
56	Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 2016, 7, 11843.	5.8	86
57	Risk Factors for Early-Onset and Very-Early-Onset Pancreatic Adenocarcinoma. Pancreas, 2016, 45, 311-316.	0.5	96
58	Impact of Polymorphic Variations of Gemcitabine Metabolism, DNA Damage Repair, and Drug-Resistance Genes on the Effect of High-Dose Chemotherapy for Relapsed or Refractory Lymphoid Malignancies. Biology of Blood and Marrow Transplantation, 2016, 22, 843-849.	2.0	9
59	Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements. Remote Sensing of Environment, 2016, 173, 59-68.	4.6	92
60	Survivin-targeted nanoparticles for pancreatic tumor imaging in mouse model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1651-1661.	1.7	12
61	Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data. PLoS Genetics, 2016, 12, e1006493.	1.5	98
62	Association of insulin resistance with breast, ovarian, endometrial and cervical cancers in non-diabetic women. American Journal of Cancer Research, 2016, 6, 2334-2344.	1.4	15
63	<scp>ABO</scp> nonâ€O type as a risk factor for thrombosis in patients with pancreatic cancer. Cancer Medicine, 2015, 4, 1651-1658.	1.3	18
64	Expression of insulin-like growth factor I receptor as a biomarker for predicting prognosis in biliary tract cancer patients. Molecular and Clinical Oncology, 2015, 3, 464-470.	0.4	7
65	Effect of Diabetes Mellitus on Survival in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Scientific Reports, 2015, 5, 17102.	1.6	36
66	Powerful Tukey's One Degree-of-Freedom Test for Detecting Gene-Gene and Gene-Environment Interactions. Cancer Informatics, 2015, 14s2, CIN.S17305.	0.9	4
67	<scp><i>TERT</i></scp> gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.	2.3	57
68	Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.	3.0	152
69	Vitamin D Metabolic Pathway Genes and Pancreatic Cancer Risk. PLoS ONE, 2015, 10, e0117574.	1.1	29
70	Hepatocyte Nuclear Factor 1A (HNF1A) as a Possible Tumor Suppressor in Pancreatic Cancer. PLoS ONE, 2015, 10, e0121082.	1.1	41
71	Characterization of Large Structural Genetic Mosaicism in Human Autosomes. American Journal of Human Genetics, 2015, 96, 487-497.	2.6	101
72	Common variation at $2p13.3$, $3q29$, $7p13$ and $17q25.1$ associated with susceptibility to pancreatic cancer. Nature Genetics, 2015 , 47 , 911 - 916 .	9.4	224

#	Article	IF	CITATIONS
73	Obesity Early in Adulthood Increases Risk but Does Not Affect Outcomes of Hepatocellular Carcinoma. Gastroenterology, 2015, 149, 119-129.	0.6	94
74	Diabetes Associated With Short Survival in Pancreatic Cancer. Journal of Clinical Oncology, 2015, 33, 2120-2121.	0.8	10
75	BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genetics in Medicine, 2015, 17, 569-577.	1.1	231
76	Aerosol Column Size Distribution and Water Uptake Observed during a Major Haze Outbreak over Beijing on January 2013. Aerosol and Air Quality Research, 2015, 15, 945-957.	0.9	14
77	Impacts of new-onset and long-term diabetes on clinical outcome of pancreatic cancer. American Journal of Cancer Research, 2015, 5, 3260-9.	1.4	10
78	Genes–Environment Interactions in Obesity- and Diabetes-Associated Pancreatic Cancer: A GWAS Data Analysis. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 98-106.	1.1	32
79	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	1.4	90
80	Cohort profile: Risk evaluation of cancers in <scp>C</scp> hinese diabetic individuals: a longitudinal (<scp>REACTION</scp>) study (é~Ÿå^—简仫:ä¸å»½ç³—å°¿ç—…æ,£è€…è,¿ç~æç°Ÿé£Žé™©çš"纵å'ç"ç©¶ï½	4^REACTIO	Nç ¹⁴⁷ ç©¶ï¼%
81	Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene- and pathway-based interaction analysis of GWAS data. Carcinogenesis, 2014, 35, 1039-1045.	1.3	41
82	Functional Logistic Regression Approach to Detecting Gene by Longitudinal Environmental Exposure Interaction in a Caseâ€Control Study. Genetic Epidemiology, 2014, 38, 638-651.	0.6	16
83	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	9.4	294
84	Biomarkers of TGF-Î ² Signaling Pathway and Prognosis of Pancreatic Cancer. PLoS ONE, 2014, 9, e85942.	1.1	99
85	Polymorphisms in genes related to one-carbon metabolism are not related to pancreatic cancer in PanScan and PanC4. Cancer Causes and Control, 2013, 24, 595-602.	0.8	4
86	Association of Previous Schistosome Infection With Diabetes and Metabolic Syndrome: A Cross-Sectional Study in Rural China. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E283-E287.	1.8	109
87	Genetic variation in the <i>PNPLA3</i> gene and hepatocellular carcinoma in USA: Risk and prognosis prediction. Molecular Carcinogenesis, 2013, 52, 139-147.	1.3	68
88	An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General Population. PLoS ONE, 2013, 8, e72311.	1.1	120
89	Genetic Epidemiology and Pancreatic Cancer. , 2013, , 49-74.		0
90	Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis, 2012, 33, 1384-1390.	1.3	102

#	Article	IF	CITATIONS
91	Metformin Use Is Associated with Better Survival of Diabetic Patients with Pancreatic Cancer. Clinical Cancer Research, 2012, 18, 2905-2912.	3.2	261
92	Association of diabetes and perineural invasion in pancreatic cancer. Cancer Medicine, 2012, 1, 357-362.	1.3	29
93	Insulin-like growth factor axis gene polymorphisms modify risk of pancreatic cancer. Cancer Epidemiology, 2012, 36, 206-211.	0.8	33
94	Correlation between Base-Excision Repair Gene Polymorphisms and Levels of In-Vitro BPDE–Induced DNA Adducts in Cultured Peripheral Blood Lymphocytes. PLoS ONE, 2012, 7, e40131.	1.1	13
95	Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics, 2012, 44, 651-658.	9.4	519
96	DNA mismatch repair network gene polymorphism as a susceptibility factor for pancreatic cancer. Molecular Carcinogenesis, 2012, 51, 491-499.	1.3	21
97	Diabetes and pancreatic cancer. Molecular Carcinogenesis, 2012, 51, 64-74.	1.3	229
98	Insights into Pancreatic Cancer Etiology from Pathway Analysis of Genome-Wide Association Study Data. PLoS ONE, 2012, 7, e46887.	1.1	68
99	Obesity and Pancreatic Cancer. , 2012, , 93-109.		0
100	Metformin as an antitumor agent in cancer prevention and treatment. Journal of Diabetes, 2011, 3, 320-327.	0.8	59
101	Diabetes and risk of pancreatic cancer: a pooled analysis of three large case–control studies. Cancer Causes and Control, 2011, 22, 189-197.	0.8	171
102	Association of multiâ€drug resistance gene polymorphisms with pancreatic cancer outcome. Cancer, 2011, 117, 744-751.	2.0	60
103	Glucose metabolism gene polymorphisms and clinical outcome in pancreatic cancer. Cancer, 2011, 117, 480-491.	2.0	32
104	Association between somatostatin receptor 5 gene polymorphisms and pancreatic cancer risk and survival. Cancer, 2011, 117, 2863-2872.	2.0	19
105	Glucose Metabolism Gene Variants Modulate the Risk of Pancreatic Cancer. Cancer Prevention Research, 2011, 4, 758-766.	0.7	25
106	Micronuclei levels in peripheral blood lymphocytes as a potential biomarker for pancreatic cancer risk. Carcinogenesis, 2011, 32, 210-215.	1.3	26
107	Body Mass Index and Obesity- and Diabetes-Associated Genotypes and Risk for Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 779-792.	1.1	79
108	DNA Mismatch Repair Gene Polymorphisms Affect Survival in Pancreatic Cancer. Oncologist, 2011, 16, 61-70.	1.9	247

#	Article	IF	Citations
109	Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer, 2010, 116, 1938-1946.	2.0	283
110	Gemcitabine metabolic and transporter gene polymorphisms are associated with drug toxicity and efficacy in patients with locally advanced pancreatic cancer. Cancer, 2010, 116, 5325-5335.	2.0	77
111	A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.	9.4	539
112	New Strategies in Pancreatic Cancer: Emerging Epidemiologic and Therapeutic Concepts: Fig. 1 Clinical Cancer Research, 2010, 16, 4313-4318.	3.2	56
113	Single Nucleotide Polymorphisms of Gemcitabine Metabolic Genes and Pancreatic Cancer Survival and Drug Toxicity. Clinical Cancer Research, 2010, 16, 320-329.	3.2	92
114	Antioxidant genes, diabetes and dietary antioxidants in association with risk of pancreatic cancer. Carcinogenesis, 2010, 31, 607-613.	1.3	35
115	Insulin-Like Growth Factor Axis Gene Polymorphisms and Clinical Outcomes in Pancreatic Cancer. Gastroenterology, 2010, 139, 464-473.e3.	0.6	49
116	Epidemiology and Prospects for Prevention of Pancreatic Cancer. , 2010, , 3-25.		5
117	Obesity and Survival Among Patients With Pancreatic Cancer—Reply. JAMA - Journal of the American Medical Association, 2009, 302, 1752.	3.8	5
118	Significant Associations of Mismatch Repair Gene Polymorphisms With Clinical Outcome of Pancreatic Cancer. Journal of Clinical Oncology, 2009, 27, 1592-1599.	0.8	46
119	Body Mass Index and Risk, Age of Onset, and Survival in Patients With Pancreatic Cancer. JAMA - Journal of the American Medical Association, 2009, 301, 2553.	3.8	372
120	DNA Repair Gene Polymorphisms and Risk of Pancreatic Cancer. Clinical Cancer Research, 2009, 15, 740-746.	3.2	71
121	Association between hypothyroidism and hepatocellular carcinoma: A case-control study in the United States. Hepatology, 2009, 49, 1563-1570.	3.6	141
122	Pancreatitis and pancreatic cancer in two large pooled case–control studies. Cancer Causes and Control, 2009, 20, 1723-1731.	0.8	58
123	Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics, 2009, 41, 986-990.	9.4	597
124	Single nucleotide polymorphism in RECQL and survival in resectable pancreatic adenocarcinoma. Hpb, 2009, 11, 435-444.	0.1	16
125	The association of family history of liver cancer with hepatocellular carcinoma: A case-control study in the United States. Journal of Hepatology, 2009, 50, 334-341.	1.8	73
126	Antidiabetic Therapies Affect Risk of Pancreatic Cancer. Gastroenterology, 2009, 137, 482-488.	0.6	536

#	Article	IF	Citations
127	Polymorphisms of p16, p27, p73, and MDM2 Modulate Response and Survival of Pancreatic Cancer Patients Treated with Preoperative Chemoradiation. Annals of Surgical Oncology, 2009, 16, 431-439.	0.7	47
128	Reply to passive smoking and the use of noncigarette tobacco products in association with risk for pancreatic cancer. Cancer, 2008, 112, 672-673.	2.0	2
129	Effect of different types of smoking and synergism with hepatitis C virus on risk of hepatocellular carcinoma in American men and women: Caseâ€control study. International Journal of Cancer, 2008, 123, 1883-1891.	2.3	73
130	Association Between Hepatitis B Virus and Pancreatic Cancer. Journal of Clinical Oncology, 2008, 26, 4557-4562.	0.8	159
131	Genetic Variants of Glutathione S-Transferase as Possible Risk Factors for Hepatocellular Carcinoma: A HuGE Systematic Review and Meta-Analysis. American Journal of Epidemiology, 2008, 167, 377-389.	1.6	113
132	Interaction of the cytochrome P4501A2, SULT1A1 and NAT gene polymorphisms with smoking and dietary mutagen intake in modification of the risk of pancreatic cancer. Carcinogenesis, 2008, 29, 1184-1191.	1.3	51
133	Single-Nucleotide Polymorphisms of DNA Damage Response Genes Are Associated with Overall Survival in Patients with Pancreatic Cancer. Clinical Cancer Research, 2008, 14, 2042-2048.	3.2	53
134	Effect of Insulin-Like Growth Factor Gene Polymorphisms Alone or In Interaction with Diabetes on the Risk of Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 3467-3473.	1.1	44
135	Genotypes and haplotypes of ERCC1 and ERCC2/XPD genes predict levels of benzo[a]pyrene diol epoxide-induced DNA adducts in cultured primary lymphocytes from healthy individuals: a genotype-phenotype correlation analysis. Carcinogenesis, 2008, 29, 1560-1566.	1.3	34
136	XRCC2 and XRCC3 Gene Polymorphismand Risk of Pancreatic Cancer. American Journal of Gastroenterology, 2008, 103, 360-367.	0.2	66
137	Dietary Mutagen Exposure and Risk of Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 655-661.	1.1	51
138	Risk Factors for Pancreatic Cancer: Case-Control Study. American Journal of Gastroenterology, 2007, 102, 2696-2707.	0.2	280
139	In vitro Benzo[a]pyrene Diol Epoxide–Induced DNA Adducts and Risk of Squamous Cell Carcinoma of Head and Neck. Cancer Research, 2007, 67, 5628-5634.	0.4	30
140	Haplotype of N-Acetyltransferase 1 and 2 and Risk of Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2379-2386.	1.1	26
141	Aurora-A and p16 Polymorphisms Contribute to an Earlier Age at Diagnosis of Pancreatic Cancer in Caucasians. Clinical Cancer Research, 2007, 13, 3100-3104.	3.2	49
142	K-ras Mutation and p16 and Preproenkephalin Promoter Hypermethylation in Plasma DNA of Pancreatic Cancer Patients. Pancreas, 2007, 34, 55-62.	0.5	87
143	The XPD Asp312Asn and Lys751Gln polymorphisms, corresponding haplotype, and pancreatic cancer risk. Cancer Letters, 2007, 245, 61-68.	3.2	49
144	Polymorphisms of phase II xenobiotic-metabolizing and DNA repair genes and in vitro N-ethyl-N-nitrosourea-induced O6-ethylguanine levels in human lymphocytes. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 627, 146-157.	0.9	7

#	Article	IF	Citations
145	Effects of base excision repair gene polymorphisms on pancreatic cancer survival. International Journal of Cancer, 2007, 120, 1748-1754.	2.3	48
146	Glutathione S-transferase gene polymorphisms and risk and survival of pancreatic cancer. Cancer, 2007, 109, 840-848.	2.0	47
147	Passive smoking and the use of noncigarette tobacco products in association with risk for pancreatic cancer: A case-control study. Cancer, 2007, 109, 2547-2556.	2.0	46
148	HER Receptor Family: Novel Candidate for Targeted Therapy for Gallbladder and Extrahepatic Bile Duct Cancer. Gastrointestinal Cancer Research: GCR, 2007, 1, 221-7.	0.8	16
149	Selected polymorphisms of DNA repair genes and risk of pancreatic cancer. Cancer Detection and Prevention, 2006, 30, 284-291.	2.1	71
150	Significant Effect of Homologous Recombination DNA Repair Gene Polymorphisms on Pancreatic Cancer Survival. Cancer Research, 2006, 66, 3323-3330.	0.4	75
151	Single Nucleotide Polymorphisms of RecQ1, RAD54L, and ATM Genes Are Associated With Reduced Survival of Pancreatic Cancer. Journal of Clinical Oncology, 2006, 24, 1720-1728.	0.8	133
152	Protein fragment domains identified using 2D gel electrophoresis/MALDI-TOF. Journal of Biomolecular Techniques, 2006, 17, 145-56.	0.8	23
153	AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genetics and Cytogenetics, 2005, 159, 10-17.	1.0	44
154	Diagnostic protein discovery using liquid chromatography/mass spectrometry for proteolytic peptide targeting. Rapid Communications in Mass Spectrometry, 2005, 19, 1624-1636.	0.7	15
155	Polymorphisms of cytochrome P4501A2 and N -acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis, 2005, 27, 103-111.	1.3	83
156	Direct Tandem Mass Spectrometry Reveals Limitations in Protein Profiling Experiments for Plasma Biomarker Discovery. Journal of Proteome Research, 2005, 4, 972-981.	1.8	210
157	The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochemical and Biophysical Research Communications, 2005, 331, 295-302.	1.0	66
158	Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clinical Cancer Research, 2005, 11, 1110-8.	3.2	125
159	Protein Expression Profiles in Pancreatic Adenocarcinoma Compared with Normal Pancreatic Tissue and Tissue Affected by Pancreatitis as Detected by Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Cancer Research, 2004, 64, 9018-9026.	0.4	305
160	The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells. Oncogene, 2004, 23, 8571-8580.	2.6	283
161	Diagnostic protein discovery using proteolytic peptide targeting and identification. Rapid Communications in Mass Spectrometry, 2004, 18, 2537-2548.	0.7	26
162	High levels of oxidative DNA damage in lymphocyte DNA of premenopausal breast cancer patients from Egypt. International Journal of Environmental Health Research, 2004, 14, 121-134.	1.3	28

#	Article	IF	Citations
163	Pancreatic cancer. Lancet, The, 2004, 363, 1049-1057.	6.3	1,761
164	Molecular Epidemiology of Pancreatic Cancer. International Journal of Gastrointestinal Cancer, 2003, 33, 3-14.	0.4	67
165	Reduced constitutive 8-oxoguanine-DNA glycosylase expression and impaired induction following oxidative DNA damage in the tuberin deficient Eker rat. Carcinogenesis, 2003, 24, 573-582.	1.3	32
166	Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clinical Cancer Research, 2003, 9, 991-7.	3.2	252
167	DNA adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 513, 37-48.	0.9	77
168	Characterization of a major aromatic DNA adduct detected in human breast tissues. Environmental and Molecular Mutagenesis, 2002, 39, 193-200.	0.9	37
169	Risk factors for hepatocellular carcinoma: Synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology, 2002, 36, 1206-1213.	3.6	667
170	Oxidative DNA damage and 8-hydroxy-2-deoxyguanosine DNA glycosylase/apurinic lyase in human breast cancer. Molecular Carcinogenesis, 2001, 31, 214-223.	1.3	62
171	In vitro BPDE-induced DNA adducts in peripheral lymphocytes as a risk factor for squamous cell carcinoma of the head and neck. International Journal of Cancer, 2001, 93, 436-440.	2.3	38
172	Bulky endogenous DNA modifications (I-compounds)—possible structural origins and functional implications. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 424, 183-194.	0.4	47
173	Dietary oat lipidsâ€induced novel DNA modifications and suppression of altered hepatic foci formation. Nutrition and Cancer, 1999, 33, 40-45.	0.9	3
174	DNA adducts induced by lipids and lipid peroxidation products: possible relationships to I-compounds. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1995, 344, 117-126.	1.2	15
175	3-Methylcholanthrene-inducible liver cytochrome(s) P450 in female Sprague-Dawley rats: possible link between P450 turnover and formation of DNA adducts and I-compounds. Carcinogenesis, 1993, 14, 879-886.	1.3	33
176	Natural dietary ingredients (oats and alfalfa) induce covalent DNA modifications (lâ€compounds) in rat liver and kidney. Nutrition and Cancer, 1992, 17, 205-216.	0.9	20
177	Effects of cytochrome P450 inducers on I-compounds in rat liver and kidney DNA. Carcinogenesis, 1992, 13, 1191-1198.	1.3	27
178	Modulation of DNA modification (I-compound) levels in rat liver and kidney by dietary carbohydrate, protein, fat, vitamin, and mineral content. Mutation Research - DNAging, 1992, 275, 47-56.	3.3	17
179	Oat lipids-induced covalent DNA modifications (I-compounds) in female Sprague-Dawley rats, as determined by 32P-postlabeling. Chemico-Biological Interactions, 1992, 84, 229-242.	1.7	12
180	Exogenous and endogenous DNA modifications as monitored by 32P-postlabeling: Relationships to cancer and aging. Experimental Gerontology, 1992, 27, 533-549.	1.2	38

#	Article	IF	CITATIONS
181	Modulation by Dietary Vitamin E of I-Compounds (Putative Indigenous DNA Modifications) in Rat Liver and Kidney. Journal of Nutrition, 1991, 121, 65-71.	1.3	10
182	Specific reduction of I-compound levels in DNA from spontaneous hepatomas of 22–24 month old male C3H mice. Carcinogenesis, 1991, 12, 2389-2391.	1.3	16
183	Acute and long-term effects of carbon tetrachloride on DNA modifications (I-compounds) in male mouse liver. Chemico-Biological Interactions, 1990, 76, 343-357.	1.7	25
184	Age-related DNA modifications (I-compounds): Modulation by physiological and pathological processes. Mutation Research - Reviews in Genetic Toxicology, 1990, 238, 245-253.	3.0	64
185	Species and tissue specificities of I-compounds as contrasted with carcinogen adducts in liver, kidney and skin DNA of Sprague-Dawley rats, ICR mice and Syrian hamsters. Carcinogenesis, 1990, 11, 2227-2232.	1.3	35
186	Strain differences of I-compounds in relation to organ sites of spontaneous tumorigenesis and non-neoplasticrenal disease in mice. Carcinogenesis, 1990, 11, 251-255.	1.3	31
187	A comparison between different types of covalent DNA modifications (I-compounds, persistent) Tj ETQq $1\ 1\ 0.78$	34314 rgB 1.3	T /Qyerlock 1