
Naveed Sabir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1089592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Flaxseed and Multi-Carbohydrase Enzymes on the Cecal Microbiota and Liver Inflammation of Laying Hens. Animals, 2021, 11, 600.	2.3	4
2	Caspase-1 inhibits IFN-Î ² production via cleavage of cGAS during M. bovis infection. Veterinary Microbiology, 2021, 258, 109126.	1.9	5
3	In vitro Impact of Yeast Expressed Hybrid Peptide CATH-2TP5 as a Prophylactic Measure Toward Sepsis and Inflammation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 454.	4.1	5
4	Mitochondrial Transcription Factor A Regulates Mycobacterium bovis–Induced IFN-β Production by Modulating Mitochondrial DNA Replication in Macrophages. Journal of Infectious Diseases, 2019, 221, 438-448.	4.0	4
5	Nilotinib: A Tyrosine Kinase Inhibitor Mediates Resistance to Intracellular Mycobacterium Via Regulating Autophagy. Cells, 2019, 8, 506.	4.1	30
6	Matrix metalloproteinases: Expression, regulation and role in the immunopathology of tuberculosis. Cell Proliferation, 2019, 52, e12649.	5.3	54
7	Kallikrein 12 Regulates Innate Resistance of Murine Macrophages against Mycobacterium bovis Infection by Modulating Autophagy and Apoptosis. Cells, 2019, 8, 415.	4.1	6
8	Endoplasmic Reticulum Stress Induces Macrophages to Produce IL-1β During Mycobacterium bovis Infection via a Positive Feedback Loop Between Mitochondrial Damage and Inflammasome Activation. Frontiers in Immunology, 2019, 10, 268.	4.8	20
9	Combinatory FK506 and Minocycline Treatment Alleviates Prion-Induced Neurodegenerative Events via Caspase-Mediated MAPK-NRF2 Pathway. International Journal of Molecular Sciences, 2019, 20, 1144.	4.1	5
10	PP2Ac Modulates AMPK-Mediated Induction of Autophagy in Mycobacterium bovis—Infected Macrophages. International Journal of Molecular Sciences, 2019, 20, 6030.	4.1	5
11	Inhibition of type I interferon signaling abrogates early Mycobacterium bovis infection. BMC Infectious Diseases, 2019, 19, 1031.	2.9	14
12	Comparative Study of the Molecular Basis of Pathogenicity of M. bovis Strains in a Mouse Model. International Journal of Molecular Sciences, 2019, 20, 5.	4.1	29
13	A study on prevalence and molecular characterization of trypanosomal species infecting equines in Lahore region, Pakistan. Journal of Parasitic Diseases, 2018, 42, 96-101.	1.0	2
14	p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Frontiers in Molecular Neuroscience, 2018, 11, 310.	2.9	58
15	miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy. Frontiers in Microbiology, 2018, 9, 602.	3.5	73
16	Regulation of MicroRNAs-Mediated Autophagic Flux: A New Regulatory Avenue for Neurodegenerative Diseases With Focus on Prion Diseases. Frontiers in Aging Neuroscience, 2018, 10, 139.	3.4	25
17	<i>Prototheca zopfii</i> isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells. Oncotarget, 2017, 8, 31938-31947.	1.8	24
18	IFN-β: A Contentious Player in Host–Pathogen Interaction in Tuberculosis. International Journal of Molecular Sciences, 2017, 18, 2725.	4.1	15

#	Article	IF	CITATIONS
19	MicroRNA 27a-3p Regulates Antimicrobial Responses of Murine Macrophages Infected by Mycobacterium avium subspecies paratuberculosis by Targeting Interleukin-10 and TGF-l²-Activated Protein Kinase 1 Binding Protein 2. Frontiers in Immunology, 2017, 8, 1915.	4.8	29