
Ramasamy Mayilmurugan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1089589/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mn(II) complexes of phenylenediamine based macrocyclic ligands as T1-MRI contrast agents. Journal of Inorganic Biochemistry, 2022, 228, 111684.	3.5	7
2	Tetrahedral copper(I) complexes of novel N,N-bidentate ligands and photophysical properties. Inorganica Chimica Acta, 2021, 514, 119999.	2.4	13
3	Copper(II) complexes of tripodal ligand scaffold (N3O) as functional models for phenoxazinone synthase. Journal of Inorganic Biochemistry, 2021, 216, 111313.	3.5	11
4	Fixation of atmospheric CO ₂ as C1-feedstock by nickel(<scp>ii</scp>) complexes. Dalton Transactions, 2021, 50, 7984-7994.	3.3	9
5	Smart dual <i>T</i> ₁ MRI-optical imaging agent based on a rhodamine appended Fe(<scp>iii</scp>)-catecholate complex. Dalton Transactions, 2020, 49, 14680-14689.	3.3	12
6	Cu(<scp>i</scp>) complexes obtained <i>via</i> spontaneous reduction of Cu(<scp>ii</scp>) complexes supported by designed bidentate ligands: bioinspired Cu(<scp>i</scp>) based catalysts for aromatic hydroxylation. Dalton Transactions, 2020, 49, 13829-13839.	3.3	17
7	Single-step benzene hydroxylation by cobalt(<scp>ii</scp>) catalysts <i>via</i> a cobalt(<scp>iii</scp>)-hydroperoxo intermediate. Catalysis Science and Technology, 2020, 10, 2540-2548.	4.1	18
8	Benzene Hydroxylation by Bioinspired Copper(II) Complexes: Coordination Geometry versus Reactivity. Inorganic Chemistry, 2020, 59, 5918-5928.	4.0	28
9	New class of tridentate 3N ligands and copper(II) complexes: A model for type-2 copper site of phenoxazinone synthase. Inorganic Chemistry Communication, 2019, 110, 107608.	3.9	11
10	Bioinspired models for an unusual 3-histidine motif of diketone dioxygenase enzyme. Dalton Transactions, 2019, 48, 14326-14336.	3.3	3
11	Catalytic Conversion of Atmospheric CO ₂ into Organic Carbonates by Nickel(II) Complexes of Diazepane-Based N ₄ Ligands. Inorganic Chemistry, 2019, 58, 12975-12985.	4.0	21
12	Coordination geometry-induced optical imaging of <scp>l</scp> -cysteine in cancer cells using imidazopyridine-based copper(<scp>ii</scp>) complexes. Dalton Transactions, 2019, 48, 1489-1503.	3.3	34
13	Exploring Inner-Sphere Water Interactions of Fe(II) and Co(II) Complexes of 12-Membered Macrocycles To Develop CEST MRI Probes. Inorganic Chemistry, 2019, 58, 8710-8719.	4.0	25
14	A Structural and Functional Model for the Trisâ€Histidine Motif in Cysteine Dioxygenase. Chemistry - A European Journal, 2019, 25, 9540-9547.	3.3	9
15	Regioselective oxidative carbon-oxygen bond cleavage catalysed by copper(II) complexes: A relevant model study for lytic polysaccharides monooxygenases activity. Journal of Catalysis, 2019, 372, 352-361.	6.2	19
16	One step phenol synthesis from benzene catalysed by nickel(<scp>ii</scp>) complexes. Catalysis Science and Technology, 2019, 9, 5991-6001.	4.1	24
17	Nickel(<scp>ii</scp>) complexes of a 3N ligand as a model for diketone cleaving unusual nickel(<scp>ii</scp>)-dioxygenase enzymes. Dalton Transactions, 2018, 47, 4049-4053.	3.3	14
18	Novel iron(II)-N-heterocyclic carbene catalysts for efficient transfer hydrogenations under mild condition. Molecular Catalysis. 2018. 459. 71-77.	2.0	13

#	Article	IF	CITATIONS
19	Fixation and sequestration of carbon dioxide by copper(II) complexes. Journal of Chemical Sciences, 2018, 130, 1.	1.5	9
20	Copper(II)â€Bioinspired Models for Copper Amine Oxidases: Oxidative Halfâ€Reaction in Water. ChemistrySelect, 2017, 2, 940-948.	1.5	7
21	A Highly Selective and Efficient Copper(II) – "Turnâ€On―Fluorescence Imaging Probe for <scp>l</scp> ysteine. European Journal of Inorganic Chemistry, 2017, 2017, 1007-1016.	2.0	30
22	Catalytic fixation of atmospheric carbon dioxide by copper(<scp>ii</scp>) complexes of bidentate ligands. Dalton Transactions, 2017, 46, 16065-16076.	3.3	23
23	Copper(<scp>ii</scp>)-benzimidazole complexes as efficient fluorescent probes for <scp>l</scp> -cysteine in water. Dalton Transactions, 2017, 46, 11408-11417.	3.3	24
24	Dioxidomolybdenum(VI) Complexes Containing Ligands with the Bipyrrolidine Backbone as Efficient Catalysts for Olefin Epoxidation. European Journal of Inorganic Chemistry, 2013, 2013, 3664-3670.	2.0	23
25	Faster oxygen atom transfer catalysis with a tungsten dioxo complex than with its molybdenum analog. Dalton Transactions, 2011, 40, 7850.	3.3	18
26	Nickel(ii) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis. Dalton Transactions, 2011, 40, 9413.	3.3	89
27	Mechanistic Insight into the Reactivity of Oxotransferases by Novel Asymmetric Dioxomolybdenum(VI) Model Complexes. Chemistry - A European Journal, 2011, 17, 704-713.	3.3	47
28	Novel square pyramidal iron(iii) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage. Dalton Transactions, 2010, 39, 9611.	3.3	42
29	Synthesis, Structure and Spectral, and Electrochemical Properties of New Mononuclear Ruthenium(III) Complexes of Tris[(benzimidazolâ€2â€yl)methyl]amine: Role of Steric Hindrance in Tuning the Catalytic Oxidation Activity. European Journal of Inorganic Chemistry, 2009, 2009, 3238-3249.	2.0	26
30	Iron(III) Complexes of Tripodal Monophenolate Ligands as Models for Non-Heme Catechol Dioxygenase Enzymes: Correlation of Dioxygenase Activity with Ligand Stereoelectronic Properties. Inorganic Chemistry, 2009, 48, 8771-8783.	4.0	64
31	Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme μ-oxo-bridged diiron(iii) catalysts using m-CPBA as oxidant. Dalton Transactions, 2009, , 5101.	3.3	48
32	Novel Iron(III) Complexes of Sterically Hindered 4N Ligands: Regioselectivity in Biomimetic Extradiol Cleavage of Catechols. Inorganic Chemistry, 2008, 47, 6645-6658.	4.0	50
33	Iron(III) Complexes of Tridentate 3N Ligands as Functional Models for Catechol Dioxygenases:  The Role of Ligand N-alkyl Substitution and Solvent on Reaction Rate and Product Selectivity. Inorganic Chemistry, 2007, 46, 10294-10306.	4.0	58
34	Mononuclear non-heme iron(III) complexes as functional models for catechol dioxygenases. Comptes Rendus Chimie, 2007, 10, 366-379.	0.5	31
35	A New Tripodal Iron(III) Monophenolate Complex:Â Effects of Ligand Basicity, Steric Hindrance, and Solvent on Regioselective Extradiol Cleavage. Inorganic Chemistry, 2007, 46, 6038-6049.	4.0	48
36	Iron(III) complexes of certain tetradentate phenolate ligands as functional models for catechol dioxygenases. Journal of Chemical Sciences, 2006, 118, 601-610.	1.5	27

#	Article	IF	CITATIONS
37	Functional models for catechol dioxygenases: Iron(III) complexes of cis-facially coordinating linear 3N ligands. Journal of Inorganic Biochemistry, 2005, 99, 1032-1042.	3.5	43
38	Iron(III) Complexes of Sterically Hindered Tetradentate Monophenolate Ligands as Functional Models for Catechol 1,2-Dioxygenases:Â The Role of Ligand Stereoelectronic Properties. Inorganic Chemistry, 2004, 43, 6284-6293.	4.0	86