
Jonas Collén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10895598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	13.7	774
2	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	13.7	460
3	Genome structure and metabolic features in the red seaweed <i>Chondrus crispus</i> shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5247-5252.	3.3	307
4	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	3.3	233
5	Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers. PLoS ONE, 2013, 8, e59001.	1.1	112
6	REACTIVE OXYGEN PRODUCTION AND DAMAGE IN INTERTIDAL FUCUS SPP. (PHAEOPHYCEAE). Journal of Phycology, 1999, 35, 54-61.	1.0	109
7	Stress-induced production of volatile halogenated organic compounds inEucheuma denticulatum(Rhodophyta) caused by elevated pH and high light intensities. European Journal of Phycology, 1996, 31, 89-95.	0.9	99
8	SEASONALITY AND THERMAL ACCLIMATION OF REACTIVE OXYGEN METABOLISM IN FUCUS VESICULOSUS (PHAEOPHYCEAE). Journal of Phycology, 2001, 37, 474-481.	1.0	94
9	NADPH oxidases in Eukaryotes: red algae provide new hints!. Current Genetics, 2006, 49, 190-204.	0.8	94
10	Chlorophyll-binding proteins revisited - a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evolutionary Biology, 2010, 10, 365.	3.2	93
11	Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta, 1995, 196, 225-230.	1.6	90
12	REACTIVE OXYGEN METABOLISM IN INTERTIDAL FUCUS SPP. (PHAEOPHYCEAE). Journal of Phycology, 1999, 35, 62-69.	1.0	89
13	The involvement of hydrogen peroxide in the production of volatile halogenated compounds by Meristiella gelidium. Phytochemistry, 1994, 36, 1197-1202.	1.4	88
14	IDENTIFICATION OF STRESS GENE TRANSCRIPTS IN LAMINARIA DIGITATA (PHAEOPHYCEAE) PROTOPLAST CULTURES BY EXPRESSED SEQUENCE TAG ANALYSIS1. Journal of Phycology, 2005, 41, 1227-1235.	1.0	86
15	Response of the transcriptome of the intertidal red seaweed <i>Chondrus crispus </i> to controlled and natural stresses. New Phytologist, 2007, 176, 45-55.	3.5	86
16	Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga <i>Ectocarpus siliculosus</i> . New Phytologist, 2010, 188, 98-110.	3.5	82
17	Production, scavenging and toxicity of hydrogen peroxide in the green seaweedUlva rigida. European Journal of Phycology, 1996, 31, 265-271.	0.9	62
18	IN VIVO MEASUREMENT OF ACTIVE OXYGEN PRODUCTION IN THE BROWN ALGA FUCUS EVANESCENS USING 2',7'-DICHLOROHYDROFLUORESCEIN DIACETATE1. Journal of Phycology, 1997, 33, 643-648.	1.0	60

Jonas Collén

#	Article	IF	CITATIONS
19	Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate. Journal of Experimental Botany, 2006, 57, 3869-3881.	2.4	55
20	Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. Journal of Phycology, 2017, 53, 731-745.	1.0	54
21	AN EXPRESSED SEQUENCE TAG ANALYSIS OF THALLUS AND REGENERATING PROTOPLASTS OF CHONDRUS CRISPUS (GIGARTINALES, RHODOPHYCEAE)1. Journal of Phycology, 2006, 42, 104-112.	1.0	50
22	GENETIC POPULATION STRUCTURE AND MATING SYSTEM IN CHONDRUS CRISPUS (RHODOPHYTA)1. Journal of Phycology, 2011, 47, 440-450.	1.0	47
23	Chondrus crispus – A Present and Historical Model Organism for Red Seaweeds. Advances in Botanical Research, 2014, 71, 53-89.	0.5	37
24	Destructive hydrogen peroxide production inEucheuma denticulatum(Rhodophyta) during stress caused by elevated pH, high light intensities and competition with other species. European Journal of Phycology, 1995, 30, 289-297.	0.9	36
25	Photosynthesis in Chondrus crispus: The contribution of energy spill-over in the regulation of excitonic flux. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 834-842.	0.5	35
26	The genome of Ectocarpus subulatus – A highly stress-tolerant brown alga. Marine Genomics, 2020, 52, 100740.	0.4	26
27	To gel or not to gel: differential expression of carrageenan-related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus. Scientific Reports, 2020, 10, 11498.	1.6	24
28	Halocarbon production and in vivo brominating activity of Eucheuma denticulatum. Phytochemistry, 1996, 42, 1527-1530.	1.4	23
29	Porphyra: Complex Life Histories in a Harsh Environment: P. umbilicalis, an Intertidal Red Alga for Genomic Analysis. Cellular Origin and Life in Extreme Habitats, 2010, , 129-148.	0.3	21
30	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	0.5	18
31	Modulation of physiological performance by temperature and salinity in the sugar kelp Saccharina latissima. Phycological Research, 2021, 69, 48-57.	0.8	16
32	Inferring Biochemical Reactions and Metabolite Structures to Understand Metabolic Pathway Drift. IScience, 2020, 23, 100849.	1.9	15
33	Mutant swarms of a totivirusâ€like entities are present in the red macroalga <i>Chondrus crispus</i> and have been partially transferred to the nuclear genome. Journal of Phycology, 2016, 52, 493-504.	1.0	14
34	ls geographical variation driving the transcriptomic responses to multiple stressors in the kelp Saccharina latissima?. BMC Plant Biology, 2019, 19, 513.	1.6	14
35	Gracilaria tenuistipitata (Rhodophyta) tolerance to cadmium and copper exposure observed through gene expression and photosynthesis analyses. Journal of Applied Phycology, 2018, 30, 2129-2141.	1.5	12
36	RT-qPCR Normalization Genes in the Red Alga Chondrus crispus. PLoS ONE, 2014, 9, e86574.	1.1	11

Jonas Collén

#	Article	IF	CITATIONS
37	Insights into agar and secondary metabolite pathways from the genome of the red alga <i>Gracilaria domingensis</i> (Rhodophyta, Gracilariales). Journal of Phycology, 2022, 58, 406-423.	1.0	10
38	Semi-Quantitative Targeted Gas Chromatography-Mass Spectrometry Profiling Supports a Late Side-Chain Reductase Cycloartenol-to-Cholesterol Biosynthesis Pathway in Brown Algae. Frontiers in Plant Science, 2021, 12, 648426.	1.7	5
39	Evolution and expression of core SWI / SNF genes in red algae. Journal of Phycology, 2018, 54, 879-887.	1.0	4
40	Win some, lose some: genome evolution in red algae. Journal of Phycology, 2015, 51, 621-623.	1.0	3