Matthias P Lutolf

List of Publications by Citations

Source: https://exaly.com/author-pdf/10894829/matthias-p-lutolf-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 10,815 76 46 h-index g-index citations papers 81 12,859 6.79 15.8 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
76	Designing materials to direct stem-cell fate. <i>Nature</i> , 2009 , 462, 433-41	50.4	1162
75	Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. <i>Nature Biotechnology</i> , 2003 , 21, 513-8	44.5	730
74	Designer matrices for intestinal stem cell and organoid culture. <i>Nature</i> , 2016 , 539, 560-564	50.4	715
73	NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. <i>Science</i> , 2016 , 352, 1436-43	33.3	645
72	Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. <i>FASEB Journal</i> , 2003 , 17, 2260-2	0.9	466
71	Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. <i>Biomaterials</i> , 2010 , 31, 8494-506	15.6	455
70	Progress and potential in organoid research. <i>Nature Reviews Genetics</i> , 2018 , 19, 671-687	30.1	354
69	Artificial niche microarrays for probing single stem cell fate in high throughput. <i>Nature Methods</i> , 2011 , 8, 949-55	21.6	343
68	Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4563-8	11.5	335
67	Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. <i>Nature</i> , 2013 , 493, 226-30	50.4	320
66	Protein delivery from materials formed by self-selective conjugate addition reactions. <i>Journal of Controlled Release</i> , 2001 , 76, 11-25	11.7	312
65	Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular Pathology, 2003, 12, 295-	33,08	295
64	Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. <i>Biomaterials</i> , 2008 , 29, 2757-66	15.6	264
63	In situ cell manipulation through enzymatic hydrogel photopatterning. <i>Nature Materials</i> , 2013 , 12, 1077	2- 8 7	244
62	Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. <i>Biomacromolecules</i> , 2007 , 8, 3000-7	6.9	234
61	The effect of matrix characteristics on fibroblast proliferation in 3D gels. <i>Biomaterials</i> , 2010 , 31, 8454-6	54 15.6	230
60	Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. <i>Advanced Materials</i> , 2012 , 24, 391-6	24	197

59	The hope and the hype of organoid research. Development (Cambridge), 2017, 144, 938-941	6.6	191
58	Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. <i>Biomaterials</i> , 2007 , 28, 3856-66	15.6	184
57	Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. <i>Tissue Engineering</i> , 2004 , 10, 515-22		176
56	Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. <i>Nature</i> , 2020 , 585, 574-	-5 78 .4	162
55	Perturbation of single hematopoietic stem cell fates in artificial niches. <i>Integrative Biology (United Kingdom)</i> , 2009 , 1, 59-69	3.7	156
54	Drug discovery through stem cell-based organoid models. <i>Advanced Drug Delivery Reviews</i> , 2014 , 69-70, 19-28	18.5	141
53	Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 1078-89	18.5	134
52	Neural tube morphogenesis in synthetic 3D microenvironments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E6831-E6839	11.5	130
51	Engineering Stem Cell Self-organization to Build Better Organoids. Cell Stem Cell, 2019, 24, 860-876	18	128
50	Integration column: microwell arrays for mammalian cell culture. <i>Integrative Biology (United Kingdom)</i> , 2009 , 1, 625-34	3.7	118
49	In Situ Patterning of Microfluidic Networks in 3D Cell-Laden Hydrogels. <i>Advanced Materials</i> , 2016 , 28, 7450-6	24	112
48	Engineering organoids. <i>Nature Reviews Materials</i> , 2021 , 1-19	73.3	112
47	Bioengineering approaches to guide stem cell-based organogenesis. <i>Development (Cambridge)</i> , 2014 , 141, 1794-804	6.6	100
46	Predicting stem cell fate changes by differential cell cycle progression patterns. <i>Development</i> (Cambridge), 2013 , 140, 459-70	6.6	98
45	High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. <i>Nature Biomedical Engineering</i> , 2020 , 4, 863-874	19	86
44	The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. <i>Cell Stem Cell</i> , 2019 , 24, 405-418.e7	18	81
43	Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. <i>Nature Protocols</i> , 2017 , 12, 2263-2274	18.8	69
42	Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. <i>Nature Methods</i> , 2019 , 16, 640-648	21.6	69

41	Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays. <i>Stem Cells</i> , 2008 , 26, 2586-94	5.8	68
40	Integration column: artificial ECM: expanding the cell biology toolbox in 3D. <i>Integrative Biology</i> (United Kingdom), 2009 , 1, 235-41	3.7	66
39	Biomaterials meet microfluidics: building the next generation of artificial niches. <i>Current Opinion in Biotechnology</i> , 2011 , 22, 690-7	11.4	64
38	Capturing Cardiogenesis in Gastruloids. <i>Cell Stem Cell</i> , 2021 , 28, 230-240.e6	18	62
37	Stem cell niche engineering through droplet microfluidics. <i>Current Opinion in Biotechnology</i> , 2015 , 35, 86-93	11.4	60
36	Tailoring hydrogel degradation and drug release via neighboring amino acid controlled ester hydrolysis. <i>Soft Matter</i> , 2009 , 5, 440-446	3.6	55
35	Micropatterning of hydrogels by soft embossing. <i>Langmuir</i> , 2009 , 25, 8774-9	4	51
34	High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. <i>Current Opinion in Cell Biology</i> , 2012 , 24, 236-44	9	50
33	Mechano-modulatory synthetic niches for liver organoid derivation. <i>Nature Communications</i> , 2020 , 11, 3416	17.4	49
32	A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells. <i>Biomaterials</i> , 2014 , 35, 779-91	15.6	46
31	3D Inkjet Printing of Complex, Cell-Laden Hydrogel Structures. <i>Scientific Reports</i> , 2018 , 8, 17099	4.9	46
30	The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. <i>Blood</i> , 2019 , 133, 2559-2569	2.2	44
29	A versatile approach to engineering biomolecule-presenting cellular microenvironments. <i>Advanced Healthcare Materials</i> , 2013 , 2, 292-6	10.1	36
28	Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. <i>Biomaterials Science</i> , 2014 , 2, 1640-1651	7.4	35
27	Cell specific ingrowth hydrogels. <i>Biomaterials</i> , 2013 , 34, 6797-803	15.6	31
26	The Effect of Thiol Structure on Allyl Sulfide Photodegradable Hydrogels and their Application as a Degradable Scaffold for Organoid Passaging. <i>Advanced Materials</i> , 2020 , 32, e1905366	24	26
25	High-throughput clonal analysis of neural stem cells in microarrayed artificial niches. <i>Integrative Biology (United Kingdom)</i> , 2012 , 4, 391-400	3.7	26
24	Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization. <i>Scientific Reports</i> , 2017 , 7, 44711	4.9	25

(2017-2017)

23	Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells. <i>Nature Communications</i> , 2017 , 8, 221	17.4	25	
22	Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension. <i>Biomacromolecules</i> , 2019 , 20, 4075-4087	6.9	24	
21	Patterning of cell-instructive hydrogels by hydrodynamic flow focusing. <i>Lab on A Chip</i> , 2013 , 13, 2099-1	05.2	21	
20	Biomimetic PEG hydrogels crosslinked with minimal plasmin-sensitive tri-amino acid peptides. Journal of Biomedical Materials Research - Part A, 2010 , 93, 870-7	5.4	21	
19	Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. <i>Journal of Clinical Investigation</i> , 2020 , 130, 1199-1216	15.9	19	
18	Live mammalian cell arrays. <i>Nature Methods</i> , 2013 , 10, 550-2	21.6	18	
17	Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. <i>Nature Materials</i> , 2021 ,	27	15	
16	Low-Defect Thiol-Michael Addition Hydrogels as Matrigel Substitutes for Epithelial Organoid Derivation. <i>Advanced Functional Materials</i> , 2020 , 30, 2000761	15.6	14	
15	Next-generation cancer organoids. Nature Materials, 2021,	27	13	
14	Hydrogel Microwell Arrays Allow the Assessment of Protease-Associated Enhancement of Cancer Cell Aggregation and Survival. <i>Microarrays (Basel, Switzerland)</i> , 2013 , 2, 208-27		9	
13	Bioengineering in vitro models of embryonic development. Stem Cell Reports, 2021, 16, 1104-1116	8	8	
12	A generic strategy for pharmacological caging of growth factors for tissue engineering. <i>Chemical Communications</i> , 2013 , 49, 5927-9	5.8	7	
11	Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 7025-7037	8.7	7	
10	High-throughput stem cell-based phenotypic screening through microniches. <i>Biomaterials Science</i> , 2019 , 7, 3471-3479	7.4	6	
9	Extracellular matrix bioengineering and systems biology approaches in liver disease. <i>Systems and Synthetic Biology</i> , 2011 , 5, 11-20		6	
8	Machine Learning of Hematopoietic Stem Cell Divisions from Paired Daughter Cell Expression Profiles Reveals Effects of Aging on Self-Renewal. <i>Cell Systems</i> , 2020 , 11, 640-652.e5	10.6	5	
U				Ľ
7	A Single Metabolite which Modulates Lipid Metabolism Alters Hematopoietic Stem/Progenitor Cell Behavior and Promotes Lymphoid Reconstitution. <i>Stem Cell Reports</i> , 2020 , 15, 566-576	8	4	

5	Artificial niche microarrays for identifying extrinsic cell-fate determinants. <i>Methods in Cell Biology</i> , 2018 , 148, 51-69	1.8	4
4	Embryonic organoids recapitulate early heart organogenesis		3
3	Mammary epithelial morphogenesis in 3D combinatorial microenvironments. <i>Scientific Reports</i> , 2020 , 10, 21635	4.9	2
2	Gastruloids asin vitromodels of embryonic blood development with spatial and temporal resolution		1

Synthetic Biomaterials as Cell-Responsive Artificial Extracellular Matrices **2008**, 255-278