David Yllanes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1089414/publications.pdf

Version: 2024-02-01

51	1,454	22	37
papers	citations	h-index	g-index
58	58	58	977
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymorphism of genetic ambigrams. Virus Evolution, 2021, 7, veab038.	4.9	5
2	Spin-glass dynamics in the presence of a magnetic field: exploration of microscopic properties. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 033301.	2.3	10
3	Thermal buckling and symmetry breaking in thin ribbons under compression. Extreme Mechanics Letters, 2021, 44, 101270.	4.1	10
4	Temperature chaos is present in off-equilibrium spin-glass dynamics. Communications Physics, 2021, 4, .	5.3	13
5	Polysomally protected viruses. Physical Biology, 2021, 18, 046009.	1.8	1
6	A random-walk-based epidemiological model. Scientific Reports, 2021, 11, 19308.	3.3	5
7	Epidemic dynamics in inhomogeneous populations and the role of superspreaders. Physical Review Research, 2021, 3, .	3.6	9
8	Scaling Law Describes the Spin-Glass Response in Theory, Experiments, and Simulations. Physical Review Letters, 2020, 125, 237202.	7.8	12
9	A minimal model for household effects in epidemics. Physical Biology, 2020, 17, 065010.	1.8	12
10	The Mpemba effect in spin glasses is a persistent memory effect. Proceedings of the National Academy of Sciences of the United States of America, 2019 , 116 , $15350-15355$.	7.1	59
11	Folding pathways to crumpling in thermalized elastic frames. Physical Review E, 2019, 100, 042112.	2.1	3
12	Self-Driven Phase Transitions Drive <i>Myxococcus xanthus</i> Fruiting Body Formation. Physical Review Letters, 2019, 122, 248102.	7.8	63
13	An exploration of ambigrammatic sequences in narnaviruses. Scientific Reports, 2019, 9, 17982.	3.3	36
14	Aging Rate of Spin Glasses from Simulations Matches Experiments. Physical Review Letters, 2018, 120, 267203.	7.8	29
15	Curvature-dependent tension and tangential flows at the interface of motility-induced phases. Soft Matter, 2018, 14, 7435-7445.	2.7	40
16	A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1838-1843.	7.1	23
17	Kinetics of motility-induced phase separation and swim pressure. Physical Review E, 2017, 95, 012601.	2.1	43
18	Thermal crumpling of perforated two-dimensional sheets. Nature Communications, 2017, 8, 1381.	12.8	23

#	Article	IF	CITATIONS
19	Matching Microscopic and Macroscopic Responses in Glasses. Physical Review Letters, 2017, 118, 157202.	7.8	31
20	How many dissenters does it take to disorder a flock?. New Journal of Physics, 2017, 19, 103026.	2.9	34
21	Temperature chaos is a non-local effect. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 123301.	2.3	16
22	Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Current Opinion in Colloid and Interface Science, 2016, 21, 34-43.	7.4	151
23	Explicit generation of the branching tree of states in spin glasses. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P05002.	2.3	3
24	The three-dimensional Ising spin glass in an external magnetic field: the role of the silent majority. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P05014.	2.3	38
25	Cumulative overlap distribution function in realistic spin glasses. Physical Review B, 2014, 90, .	3.2	14
26	Dynamical transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo> = <td>no>2naml:r</td><td>nnx33x/mml:m</td></mml:mo></mml:mrow></mml:math>	no> 2n aml:r	nnx33x/mml:m
27	Janus II: A new generation application-driven computer for spin-system simulations. Computer Physics Communications, 2014, 185, 550-559.	7.5	40
28	Critical parameters of the three-dimensional Ising spin glass. Physical Review B, 2013, 88, .	3.2	82
29	Comment on "Evidence of Non-Mean-Field-Like Low-Temperature Behavior in the Edwards-Anderson Spin-Glass Model― Physical Review Letters, 2013, 110, 219701.	7.8	20
30	Numerical study of the overlap Lee–Yang singularities in the three-dimensional Edwards–Anderson model. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P02031.	2.3	2
31	The Janus project: boosting spin-glass simulations using FPGAs. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 227-232.	0.4	5
32	An FPGA-Based Supercomputer for Statistical Physics: The Weird Case of Janus., 2013,, 481-506.		3
33	Spin Glass Simulations on the Janus Architecture: A Desperate Quest for Strong Scaling. Lecture Notes in Computer Science, 2013, , 528-537.	1.3	1
34	Thermodynamic glass transition in a spin glass without time-reversal symmetry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6452-6456.	7.1	54
35	Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project. European Physical Journal: Special Topics, 2012, 210, 33-51.	2.6	21
36	Tethered Monte Carlo: Managing Rugged Free-Energy Landscapes with a Helmholtz-Potential Formalism. Journal of Statistical Physics, 2011, 144, 554-596.	1.2	10

#	Article	IF	CITATIONS
37	Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P10019.	2.3	15
38	Critical behavior of the dilute antiferromagnet in a magnetic field. Physical Review B, 2011, 84, .	3.2	16
39	Sample-to-sample fluctuations of the overlap distributions in the three-dimensional Edwards-Anderson spin glass. Physical Review B, 2011, 84, .	3.2	17
40	Nature of the spin-glass phase at experimental length scales. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P06026.	2.3	70
41	Critical behavior of three-dimensional disordered Potts models with many states. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P05002.	2.3	8
42	Static versus Dynamic Heterogeneities in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>D </mml:mi> <mml:mo> = </mml:mo> <mml:mn>3 </mml:mn> </mml:math> Edwards-And Spin Glass. Physical Review Letters, 2010, 105, 177202.	dersön-Isin	g ³⁷
43	Cluster Monte Carlo algorithm with a conserved order parameter. Physical Review E, 2009, 80, 015701.	2.1	2
44	Spin glass phase in the four-state three-dimensional Potts model. Physical Review B, 2009, 79, .	3.2	14
45	Janus: An FPGA-Based System for High-Performance Scientific Computing. Computing in Science and Engineering, 2009, 11, 48-58.	1.2	75
46	An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses at Fixed Temperature. Journal of Statistical Physics, 2009, 135, 1121-1158.	1.2	83
47	Tethered Monte Carlo: Computing the effective potential without critical slowing down. Nuclear Physics B, 2009, 807, 424-454.	2.5	19
48	Nonequilibrium spin glass dynamics with Janus. , 2009, , .		1
49	The Invar tensor package: Differential invariants of Riemann. Computer Physics Communications, 2008, 179, 586-590.	7.5	65
50	Nonequilibrium Spin-Glass Dynamics from Picoseconds to a Tenth of a Second. Physical Review Letters, 2008, 101, 157201.	7.8	77
51	Invar: computer algebra for the invariants of the Riemann tensor. EAS Publications Series, 2008, 30, 223-226.	0.3	O