Dimitris Syvridis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10891333/publications.pdf

Version: 2024-02-01

		279798	128289
100	3,772	23	60
papers	citations	h-index	g-index
101	101	101	2392
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D P-Torus: Wavelength-Based Switching in Packet Granularity for Edge Data Center Networks. Lecture Notes in Networks and Systems, 2022, , 261-272.	0.7	О
2	Implementation and assessment of a non-line-of-sight network cluster operating at the UVC wavelength band. , 2022, , .		0
3	Physical Layer Security in Optical Networks. Lecture Notes in Computer Science, 2020, , 412-424.	1.3	O
4	P-Torus: wavelength-based switching in packet granularity for intra-data-center networks. Journal of Optical Communications and Networking, 2019, 11, 491.	4.8	4
5	Reservoir computing based on transverse modes in a single optical waveguide. Optics Letters, 2019, 44, 1218.	3.3	12
6	Performance enhancement of point-to-point diffuse links at 265 nm under fog conditions. , 2019, , .		0
7	Laser Induced Speckle as a Foundation for Physical Security and Optical Computing. , 2018, , .		O
8	Physical Unclonable Function based on a Multi-Mode Optical Waveguide. Scientific Reports, 2018, 8, 9653.	3.3	55
9	Experimental Evaluation of Modulation Formats' Performance in Diffuse UV Channels. IEEE Photonics Technology Letters, 2017, 29, 897-900.	2.5	4
_			
10	Data transmissions at 1.98 Â μ m in cm-long SiGe waveguides. , 2017, , .		О
10	Data transmissions at 1.98 µm in cm-long SiGe waveguides. , 2017, , . Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	2
	Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by	2.2	0 2 14
11	Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback. Applied Physics B: Lasers and Optics, 2017, 123, 1. Time-Scale Independent Permutation Entropy of a Photonic Integrated Device. Journal of Lightwave		2
11 12	Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback. Applied Physics B: Lasers and Optics, 2017, 123, 1. Time-Scale Independent Permutation Entropy of a Photonic Integrated Device. Journal of Lightwave Technology, 2017, 35, 88-95.	4.6	14
11 12 13	Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback. Applied Physics B: Lasers and Optics, 2017, 123, 1. Time-Scale Independent Permutation Entropy of a Photonic Integrated Device. Journal of Lightwave Technology, 2017, 35, 88-95. Power losses in diffuse ultraviolet optical communications channels. Optics Letters, 2016, 41, 4421. Highly Correlated Chaotic Emission From Bidirectionally Coupled Semiconductor Lasers. IEEE	4.6 3.3	2 14 23
11 12 13	Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback. Applied Physics B: Lasers and Optics, 2017, 123, 1. Time-Scale Independent Permutation Entropy of a Photonic Integrated Device. Journal of Lightwave Technology, 2017, 35, 88-95. Power losses in diffuse ultraviolet optical communications channels. Optics Letters, 2016, 41, 4421. Highly Correlated Chaotic Emission From Bidirectionally Coupled Semiconductor Lasers. IEEE Photonics Technology Letters, 2016, 28, 1819-1822.	4.6 3.3	2 14 23 14
11 12 13 14	Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback. Applied Physics B: Lasers and Optics, 2017, 123, 1. Time-Scale Independent Permutation Entropy of a Photonic Integrated Device. Journal of Lightwave Technology, 2017, 35, 88-95. Power losses in diffuse ultraviolet optical communications channels. Optics Letters, 2016, 41, 4421. Highly Correlated Chaotic Emission From Bidirectionally Coupled Semiconductor Lasers. IEEE Photonics Technology Letters, 2016, 28, 1819-1822. Comparison of CAP and DFT-spread DMT for high speed transmission over 50m SI-POF., 2016, , Gb/s One-Time-Pad Data Encryption With Synchronized Chaos-Based True Random Bit Generators.	4.6 3.3 2.5	2 14 23 14

#	Article	IF	CITATIONS
19	Polarization Insensitive Wavelength Conversion in a Low-Birefringence SiGe Waveguide. IEEE Photonics Technology Letters, 2016, 28, 1221-1224.	2.5	8
20	Physical layer one-time-pad data encryption through synchronized semiconductor laser networks. , 2016, , .		1
21	Experimental mapping of nonlinear dynamics in synchronized coupled semiconductor laser networks. Proceedings of SPIE, 2015, , .	0.8	0
22	Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback. Proceedings of SPIE, 2015, , .	0.8	1
23	All-optical reservoir computing system based on InGaAsP ring resonators for high-speed identification and optical routing in optical networks. Proceedings of SPIE, 2015, , .	0.8	7
24	High-speed all-optical pattern recognition of dispersive Fourier images through a photonic reservoir computing subsystem. Optics Letters, 2015, 40, 3416.	3.3	25
25	Integrated semiconductor laser with optical feedback: transition from short to long cavity regime. Optics Express, 2015, 23, 18754.	3.4	30
26	Coupled semiconductor laser network topologies for efficient synchronization. , 2015, , .		1
27	Two-mode injection-locked FP laser receiver: a regenerator for long-distance stable fiber delivery of radio-frequency standards. Optics Letters, 2015, 40, 886.	3.3	5
28	Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. Optics Letters, 2015, 40, 4118.	3.3	49
29	Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications. , 2014 , , .		1
30	Displacement Sensing by Repetition Rate Pulling in a Passively Mode Locked Laser Under Feedback. IEEE Photonics Technology Letters, 2014, 26, 2418-2421.	2.5	0
31	Towards nonlinear conversion from mid- to near-infrared wavelengths using Silicon Germanium waveguides. Optics Express, 2014, 22, 9667.	3.4	22
32	Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback. Optics Communications, 2014, 313, 248-255.	2.1	18
33	Symmetric Few-Mode Fiber Couplers as the Key Component for Broadband Mode Multiplexing. Journal of Lightwave Technology, 2014, 32, 2461-2467.	4.6	23
34	Efficient Orthogonal Modulation Enabled by Injection Locked Limiting Amplifiers. IEEE Photonics Technology Letters, 2013, 25, 667-670.	2.5	2
35	Rate-Adaptive DFT-Spread DMT and CDMA-DMT for 1-mm SI-POF Short-Range Links. IEEE Photonics Technology Letters, 2013, 25, 1574-1577.	2.5	3
36	Analysis of the Bubbling Effect in Synchronized Networks With Semiconductor Lasers. IEEE Photonics Technology Letters, 2013, 25, 817-820.	2.5	16

3

#	Article	IF	CITATIONS
37	FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide. Optics Express, 2013, 21, 16683.	3.4	38
38	Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3048.	2.1	68
39	Optical properties of silicon germanium waveguides at telecommunication wavelengths. Optics Express, 2013, 21, 16690.	3.4	44
40	External optical feedback-induced wavelength selection and Q-switching elimination in an InAs/InGaAs passively mode-locked quantum dot laser. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1071.	2.1	2
41	Effect of the number of quantum dot layers and dual state emission on the performance of InAs/InGaAs passively mode-locked lasers. Applied Physics Letters, 2012, 101, 251115.	3.3	5
42	Two-Section Quantum-Dot Mode-Locked Lasers Under Optical Feedback: Pulse Broadening and Harmonic Operation. IEEE Journal of Quantum Electronics, 2012, 48, 872-877.	1.9	16
43	Sensitivity Analysis of a Star Optical Network Based on Mutually Coupled Semiconductor Lasers. Journal of Lightwave Technology, 2012, 30, 2618-2624.	4.6	24
44	Performance Evaluation of CDMA-DMT for 1-mm SI-POF Short-Range Transmission Links. IEEE Photonics Technology Letters, 2012, 24, 2042-2045.	2.5	1
45	Tunable Master-Oscillator Power-Amplifier Based on Chirped Quantum-Dot Structures. IEEE Photonics Technology Letters, 2012, 24, 1841-1844.	2.5	14
46	Distributed Optical Parametric Amplification at 1.3 \$mu{m m}\$: Performance and Applications in Optical Access Networks. IEEE Photonics Technology Letters, 2012, 24, 694-696.	2.5	2
47	All-Fiber Broadband \${m LP}_{02}\$ Mode Converter for Future Wavelength and Mode Division Multiplexing Systems. IEEE Photonics Technology Letters, 2012, 24, 1638-1641.	2.5	53
48	WDM Switching Module Based on Active Microring Resonators: Applications to Metro Networks. , 2012, , .		0
49	Field-Trial of an All-Optical PSK Regenerator/Multicaster in a 40 Gbit/s, 38 Channel DWDM Transmission Experiment. Journal of Lightwave Technology, 2012, 30, 512-520.	4.6	17
50	Amplitude Noise Limiting Amplifier for Phase Encoded Signals Using Injection Locking in Semiconductor Lasers. Journal of Lightwave Technology, 2012, 30, 764-771.	4.6	31
51	Sub-Tb/s Physical Random Bit Generators Based on Direct Detection of Amplified Spontaneous Emission Signals. Journal of Lightwave Technology, 2012, 30, 1329-1334.	4.6	64
52	Design and Experimental Evaluation of Active-Passive Integrated Microring Lasers: Noise Properties. IEEE Journal of Quantum Electronics, 2012, 48, 99-106.	1.9	4
53	Spectral Splitting Effects and Their Influence to the Performance of Quantum Dot Mode Locked Lasers. , 2012, , 49-63.		0
54	Phase regeneration of optical signals. , 2011, , .		0

#	Article	IF	Citations
55	Adaptive Interrogation for Fast Optical Sensing Based on Cascaded Micro-Ring Resonators. IEEE Sensors Journal, 2011, 11, 1595-1601.	4.7	4
56	Space-time block code based MIMO encoding for large core step index plastic optical fiber transmission systems. Optics Express, 2011, 19, 10336.	3.4	10
57	Phase synchronization scheme for a practical phase sensitive amplifier of ASK-NRZ signals. Optics Express, 2011, 19, 12384.	3.4	10
58	Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nature Photonics, 2011, 5, 748-752.	31.4	145
59	Design and Experimental Evaluation of Active-Passive Integrated Microring Lasers: Threshold Current and Spectral Properties. IEEE Journal of Quantum Electronics, 2011, 47, 1557-1564.	1.9	4
60	Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser. Applied Physics Letters, 2011, 99, .	3.3	8
61	QPSK Phase and Amplitude Regeneration at 56 Gbaud in a Novel Idler-Free Non-Degenerate Phase Sensitive Amplifier. , 2011 , , .		20
62	Broadly Tunable Laser Using Double-Rings Vertically Coupled to a Passive Waveguide. IEEE Journal of Quantum Electronics, 2010, 46, 306-312.	1.9	3
63	Message Origin Authentication and Integrity Protection in Chaos-Based Optical Communication. IEEE Journal of Quantum Electronics, 2010, 46, 377-383.	1.9	2
64	Encryption Efficiency Analysis of Chaotic Communication Systems Based on Photonic Integrated Chaotic Circuits. IEEE Journal of Quantum Electronics, 2010, 46, 1421-1429.	1.9	27
65	Enhancement of Chaos Encryption Potential by Combining All-Optical and Electrooptical Chaos Generators. IEEE Journal of Quantum Electronics, 2010, 46, 1642-1649.	1.9	39
66	All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photonics, 2010, 4, 690-695.	31.4	595
67	Pulse width narrowing due to dual ground state emission in quantum dot passively mode locked lasers. Applied Physics Letters, 2010, 96, 211110.	3.3	13
68	Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser. Applied Physics Letters, 2010, 97, 061114.	3.3	11
69	Dynamic Properties of a WDM Switching Module Based on Active Microring Resonators. IEEE Photonics Technology Letters, 2010, 22, 206-208.	2.5	14
70	All-Optical Regeneration Based on Phase-Sensitive Nondegenerate Four-Wave Mixing in Optical Fibers. IEEE Photonics Technology Letters, 2010, 22, 1826-1828.	2.5	9
71	Chaos-on-a-chip secures data transmission in optical fiber links. Optics Express, 2010, 18, 5188.	3.4	112
72	Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation. Optics Express, 2010, 18, 12832.	3.4	54

#	Article	IF	CITATIONS
73	Implementation of $140\mathrm{Gb/s}$ true random bit generator based on a chaotic photonic integrated circuit. Optics Express, $2010,18,18763.$	3.4	177
74	An Optical Mode Filtering Technique for the Improvement of the Large Core SI-POF Link Performance. Journal of Lightwave Technology, 2010, 28, 1796-1801.	4.6	9
75	First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier. , 2010 , , .		37
76	Chaos Applications in Optical Communications. , 2010, , 479-510.		2
77	All-optical phase regeneration of 40Gbit/s DPSK signals in a black-box phase sensitive amplifier. , 2010, ,		14
78	Microring resonators with enhanced tolerance to fabrication misalignments. Journal of Optics, 2009, 11, 125401.	1.5	0
79	Dynamic Analysis of Crosstalk Performance in Microring-Based Add/Drop Filters. Journal of Lightwave Technology, 2009, 27, 2027-2034.	4.6	17
80	Tunable Wavelength Conversion Using Cross-Gain Modulation in a Vertically Coupled Microring Laser. IEEE Photonics Technology Letters, 2009, 21, 1618-1620.	2.5	10
81	Influence of Connectors on the Performance of a VCSEL-Based Standard Step-Index POF Link. IEEE Photonics Technology Letters, 2009, 21, 1888-1890.	2.5	10
82	Optical Microring-Based Interrogation Method for Phase Detecting Elements. IEEE Sensors Journal, 2009, 9, 2016-2023.	4.7	2
83	Integrated Devices for Optical Chaos Generation and Communication Applications. IEEE Journal of Quantum Electronics, 2009, 45, 1421-1428.	1.9	29
84	Microring-based devices for telecommunication applications. , 2009, , .		0
85	Polarization properties of active semiconductor micro-ring structures. Optics Communications, 2008, 281, 421-425.	2.1	2
86	Potential of InGaAs/GaAs Quantum Dots for Applications in Vertical Cavity Semiconductor Optical Amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1180-1187.	2.9	27
87	Optical Bistability in Active Semiconductor Microring Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 918-926.	2.9	9
88	A Chaos-Based Approach to Secure Communications. Optics and Photonics News, 2008, 19, 36.	0.5	6
89	Direct Modulation Properties of 1.55- $muhbox{m}$ InGaAsP/InP Microring Lasers. Journal of Lightwave Technology, 2008, 26, 251-256.	4.6	10
90	Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications. IEEE Journal of Quantum Electronics, 2008, 44, 119-124.	1.9	59

#	Article	IF	CITATIONS
91	Hurst exponents and cyclic scenarios in a photonic integrated circuit. Physical Review E, 2008, 78, 066215.	2.1	12
92	Chaos and non-linear dynamics of a 1.55νm InGaAsP-InP microring laser. Proceedings of SPIE, 2008, , .	0.8	0
93	Subcarrier modulation in all-optical chaotic communication systems. Optics Letters, 2007, 32, 2134.	3.3	22
94	Chaotic dynamics of semiconductor microring lasers. Optics Letters, 2007, 32, 2912.	3.3	11
95	Analysis of the Optical Amplifier Noise Effect on Electrooptically Generated Hyperchaos. IEEE Journal of Quantum Electronics, 2007, 43, 552-559.	1.9	8
96	Intraband Crosstalk Properties of Add–Drop Filters Based on Active Microring Resonators. IEEE Photonics Technology Letters, 2007, 19, 1649-1651.	2.5	12
97	Suppression of higher order modes in vertically coupled microâ€ring resonators. Microwave and Optical Technology Letters, 2007, 49, 2963-2968.	1.4	1
98	Investigation on the Multimode Dynamics of InGaAsPInP Microring Lasers. IEEE Journal of Quantum Electronics, 2006, 42, 1266-1273.	1.9	18
99	Widely Tunable All-Active Microring Lasers. IEEE Photonics Technology Letters, 2006, 18, 2641-2643.	2.5	17
100	Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 2005, 438, 343-346.	27.8	1,365