Tianyu Lei

List of Publications by Citations

Source: https://exaly.com/author-pdf/10891266/tianyu-lei-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34	2,933	25	35
papers	citations	h-index	g-index
35	3,749 ext. citations	17.3	5.32
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
34	Multi-Functional Layered WS2 Nanosheets for Enhancing the Performance of Lithium B ulfur Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1601843	21.8	395
33	Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. <i>Joule</i> , 2018 , 2, 2091-2104	27.8	226
32	Designing Safe Electrolyte Systems for a High-Stability LithiumBulfur Battery. <i>Advanced Energy Materials</i> , 2018 , 8, 1702348	21.8	210
31	A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High-Performance Sulfur Electrodes in Lithium-Sulfur Battery. <i>Advanced Energy Materials</i> , 2018 , 8, 1702889	21.8	194
30	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4484-4502	16.4	194
29	Adsorption-Catalysis Design in the Lithium-Sulfur Battery. Advanced Energy Materials, 2020, 10, 190300) 8 21.8	154
28	Atomic Interlamellar Ion Path in High Sulfur Content Lithium-Montmorillonite Host Enables High-Rate and Stable Lithium-Sulfur Battery. <i>Advanced Materials</i> , 2018 , 30, e1804084	24	151
27	Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides. <i>Advanced Science</i> , 2017 , 4, 1700231	13.6	145
26	Strategies toward High-Loading LithiumBulfur Battery. <i>Advanced Energy Materials</i> , 2020 , 10, 2000082	21.8	140
25	TiO Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium-Sulfur Batteries. <i>Small</i> , 2017 , 13, 1701013	11	126
24	A New Member of Electrocatalysts Based on Nickel Metaphosphate Nanocrystals for Efficient Water Oxidation. <i>Advanced Materials</i> , 2018 , 30, 1705045	24	117
23	A Nonflammable and Thermotolerant Separator Suppresses Polysulfide Dissolution for Safe and Long-Cycle Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1802441	21.8	97
22	Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth. <i>Small</i> , 2017 , 13, 1701042	11	94
21	An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. <i>Energy and Environmental Science</i> , 2021 , 14, 4115-4124	35.4	94
20	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. <i>Nature Communications</i> , 2019 , 10, 4973	17.4	86
19	Heterostructured NiS/ZnInS Realizing Toroid-like LiO Deposition in Lithium-Oxygen Batteries with Low-Donor-Number Solvents. <i>ACS Nano</i> , 2020 , 14, 3490-3499	16.7	64
18	Carbon Quantum DotsModified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1802955	21.8	64

LIST OF PUBLICATIONS

17	Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. <i>Nano Energy</i> , 2020 , 68, 104373	17.1	61
16	Optimizing Redox Reactions in Aprotic LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002180	21.8	45
15	TiO 2 nanowire array as a polar absorber for high-performance lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2018 , 264, 20-25	6.7	38
14	Self-Confined Growth of Ultrathin 2D Nonlayered Wide-Bandgap Semiconductor CuBr Flakes. <i>Advanced Materials</i> , 2019 , 31, e1903580	24	37
13	An Efficient Separator with Low Li-Ion Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901800	21.8	33
12	An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials. <i>Advanced Energy Materials</i> , 2019 , 9, 1803627	21.8	31
11	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien fileine effiziente elektrokatalytische Wasserspaltung. <i>Angewandte Chemie</i> , 2019 , 131, 4532-4551	3.6	27
10	A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries. <i>Nanoscale Research Letters</i> , 2017 , 12, 195	5	26
9	Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries. <i>Energy Storage Materials</i> , 2020 , 26, 65-72	19.4	24
8	Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. <i>Nano Energy</i> , 2021 , 79, 105481	17.1	12
7	3D Printed Liß Batteries with In Situ Decorated Li2S/C Cathode: Interface Engineering Induced Loading-Insensitivity for Scaled Areal Performance. <i>Advanced Energy Materials</i> , 2021 , 11, 2100420	21.8	11
6	In Situ/Operando Raman Techniques in LithiumBulfur Batteries. <i>Small Structures</i> ,2100170	8.7	10
5	Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium Bulfur batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9771-9779	13	8
4	Ferromagnetic-Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO) (La Sr MnO) Superlattices. <i>Small</i> , 2017 , 13, 1700107	11	6
3	Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. <i>Nano Energy</i> , 2022 , 92, 106708	17.1	5
2	Mapping Techniques for the Design of Lithium-Sulfur Batteries Small, 2022, e2106657	11	3
1	Ion-Inserted Metal-Organic Frameworks Accelerate the Mass Transfer Kinetics in Lithium-Sulfur Batteries. <i>Small</i> , 2021 , 17, e2104367	11	3