
Tianyu Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10891266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiâ€Functional Layered WS ₂ Nanosheets for Enhancing the Performance of Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1601843.	10.2	472
2	An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy and Environmental Science, 2021, 14, 4115-4124.	15.6	376
3	Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. Joule, 2018, 2, 2091-2104.	11.7	345
4	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
5	Adsorptionâ€Catalysis Design in the Lithium‣ulfur Battery. Advanced Energy Materials, 2020, 10, 1903008.	10.2	275
6	Strategies toward High‣oading Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 2000082.	10.2	272
7	A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for Highâ€Performance Sulfur Electrodes in Lithiumâ€6ulfur Battery. Advanced Energy Materials, 2018, 8, 1702889.	10.2	270
8	Designing Safe Electrolyte Systems for a High‣tability Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1702348.	10.2	266
9	Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides. Advanced Science, 2017, 4, 1700231.	5.6	219
10	Atomic Interlamellar Ion Path in High Sulfur Content Lithiumâ€Montmorillonite Host Enables Highâ€Rate and Stable Lithium–Sulfur Battery. Advanced Materials, 2018, 30, e1804084.	11.1	201
11	A New Member of Electrocatalysts Based on Nickel Metaphosphate Nanocrystals for Efficient Water Oxidation. Advanced Materials, 2018, 30, 1705045.	11.1	149
12	TiO ₂ Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium–Sulfur Batteries. Small, 2017, 13, 1701013.	5.2	147
13	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	5.8	144
14	A Nonflammable and Thermotolerant Separator Suppresses Polysulfide Dissolution for Safe and Longâ€Cycle Lithiumâ€6ulfur Batteries. Advanced Energy Materials, 2018, 8, 1802441.	10.2	133
15	Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth. Small, 2017, 13, 1701042.	5.2	114
16	Heterostructured NiS ₂ /ZnIn ₂ S ₄ Realizing Toroid-like Li ₂ O ₂ Deposition in Lithium–Oxygen Batteries with Low-Donor-Number Solvents. ACS Nano, 2020, 14, 3490-3499.	7.3	113
17	Optimizing Redox Reactions in Aprotic Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002180.	10.2	112
18	Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802955.	10.2	102

Τιάνγυ Lei

#	Article	IF	CITATIONS
19	Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy, 2020, 68, 104373.	8.2	95
20	Self onfined Growth of Ultrathin 2D Nonlayered Wideâ€Bandgap Semiconductor CuBr Flakes. Advanced Materials, 2019, 31, e1903580.	11.1	61
21	An Efficient Separator with Low Liâ€lon Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901800.	10.2	61
22	An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials. Advanced Energy Materials, 2019, 9, 1803627.	10.2	53
23	TiO 2 nanowire array as a polar absorber for high-performance lithium-sulfur batteries. Electrochimica Acta, 2018, 264, 20-25.	2.6	49
24	In Situ/Operando Raman Techniques in Lithium–Sulfur Batteries. Small Structures, 2022, 3, .	6.9	44
25	3D Printed Li–S Batteries with In Situ Decorated Li ₂ S/C Cathode: Interface Engineering Induced Loadingâ€Insensitivity for Scaled Areal Performance. Advanced Energy Materials, 2021, 11, 2100420.	10.2	37
26	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
27	Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. Nano Energy, 2021, 79, 105481.	8.2	32
28	Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries. Energy Storage Materials, 2020, 26, 65-72.	9.5	31
29	A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries. Nanoscale Research Letters, 2017, 12, 195.	3.1	30
30	Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 9771-9779.	5.2	21
31	Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. Nano Energy, 2022, 92, 106708.	8.2	14
32	Ionâ€Inserted Metal–Organic Frameworks Accelerate the Mass Transfer Kinetics in Lithium–Sulfur Batteries. Small, 2021, 17, e2104367.	5.2	13
33	Mapping Techniques for the Design of Lithiumâ€Sulfur Batteries. Small, 2022, 18, e2106657.	5.2	13
34	On-chip high-energy interdigital micro-supercapacitors with 3D nanotubular array electrodes. Journal of Materials Chemistry A, 2022, 10, 14051-14059.	5.2	13
35	Ferromagnetic–Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO ₃) <i>_m</i> (La _{0.7} Sr _{0.3} MnO ₃) <i>_{ Superlattices. Small, 2017, 13, 1700107.}</i>	n< /s.u b> </td <td>i> 7</td>	i> 7