List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10891247/publications.pdf

Version: 2024-02-01

216	15,930	72	113
papers	citations	h-index	g-index
228	228	228	15077
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, 18, 382-388.	19.0	557
2	Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1302-1309.	2.4	546
3	Ordering effects of cholesterol and its analogues. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 97-121.	2.6	506
4	Under the Influence of Alcohol: The Effect of Ethanol and Methanol on Lipid Bilayers. Biophysical Journal, 2006, 90, 1121-1135.	0.5	321
5	Lessons of Slicing Membranes: Interplay of Packing, Free Area, and Lateral Diffusion in Phospholipid/Cholesterol Bilayers. Biophysical Journal, 2004, 87, 1076-1091.	0.5	265
6	Assessing the Nature of Lipid Raft Membranes. PLoS Computational Biology, 2007, 3, e34.	3.2	257
7	Multiscale modeling of emergent materials: biological and soft matter. Physical Chemistry Chemical Physics, 2009, 11, 1869.	2.8	243
8	Effect of NaCl and KCl on Phosphatidylcholine and Phosphatidylethanolamine Lipid Membranes: Insight from Atomic-Scale Simulations for Understanding Salt-Induced Effects in the Plasma Membrane. Journal of Physical Chemistry B, 2008, 112, 1953-1962.	2.6	227
9	BODIPYâ€Cholesterol: A New Tool to Visualize Sterol Trafficking in Living Cells and Organisms. Traffic, 2008, 9, 1839-1849.	2.7	221
10	Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter, 2011, 7, 698-708.	2.7	216
11	Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans. PLoS Biology, 2011, 9, e1000623.	5.6	213
12	Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chemical Reviews, 2019, 119, 5607-5774.	47.7	209
13	Lipid Bilayers Driven to a Wrong Lane in Molecular Dynamics Simulations by Subtle Changes in Long-Range Electrostatic Interactions. Journal of Physical Chemistry B, 2004, 108, 4485-4494.	2.6	196
14	Cholesterol modulates glycolipid conformation and receptor activity. Nature Chemical Biology, 2011, 7, 260-262.	8.0	194
15	Pore Formation Coupled to Ion Transport through Lipid Membranes as Induced by Transmembrane Ionic Charge Imbalance:  Atomistic Molecular Dynamics Study. Journal of the American Chemical Society, 2005, 127, 17570-17571.	13.7	190
16	Polyunsaturation in Lipid Membranes:  Dynamic Properties and Lateral Pressure Profiles. Journal of Physical Chemistry B, 2007, 111, 3139-3150.	2.6	180
17	3D Pressure Field in Lipid Membranes and Membrane-Protein Complexes. Physical Review Letters, 2009, 102, 078101.	7.8	180
18	Atomic-Scale Structure and Electrostatics of Anionic Palmitoyloleoylphosphatidylglycerol Lipid Bilayers with Na+ Counterions. Biophysical Journal, 2007, 92, 1114-1124.	0.5	178

#	Article	IF	CITATIONS
19	Defect-Mediated Trafficking across Cell Membranes: Insights from <i>in Silico</i> i> Modeling. Chemical Reviews, 2010, 110, 6077-6103.	47.7	171
20	Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discussions, 2013, 161, 397-417.	3.2	170
21	The hydrophobic effect and its role in cold denaturation. Cryobiology, 2010, 60, 91-99.	0.7	164
22	Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?. Chemistry and Physics of Lipids, 2014, 184, 82-104.	3.2	159
23	Membrane Proteins Diffuse as Dynamic Complexes with Lipids. Journal of the American Chemical Society, 2010, 132, 7574-7575.	13.7	157
24	Cationic DMPC/DMTAP Lipid Bilayers: Molecular Dynamics Study. Biophysical Journal, 2004, 86, 3461-3472.	0.5	156
25	Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins. Physical Review X, 2016, 6, .	8.9	152
26	Excessive aggregation of membrane proteins in the Martini model. PLoS ONE, 2017, 12, e0187936.	2.5	147
27	Lateral Diffusion in Lipid Membranes through Collective Flows. Journal of the American Chemical Society, 2008, 130, 44-45.	13.7	145
28	Structure and Dynamics of Sphingomyelin Bilayer: Insight Gained through Systematic Comparison to Phosphatidylcholine. Biophysical Journal, 2004, 87, 2976-2989.	0.5	141
29	Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. Journal of Physical Chemistry B, 2014, 118, 4571-4581.	2.6	139
30	<i>N</i> -Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4334-4339.	7.1	135
31	Interplay of Unsaturated Phospholipids and Cholesterol in Membranes: Effect of the Double-Bond Position. Biophysical Journal, 2008, 95, 3295-3305.	0.5	132
32	Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16628-16633.	7.1	131
33	Cholesterol oxidation products and their biological importance. Chemistry and Physics of Lipids, 2016, 199, 144-160.	3.2	130
34	Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 3747-3755.	2.6	129
35	Coarse-grained model for phospholipid/cholesterol bilayer. Journal of Chemical Physics, 2004, 121, 9156-9165.	3.0	125
36	Molecular Mechanism for Lipid Flip-Flops. Journal of Physical Chemistry B, 2007, 111, 13554-13559.	2.6	125

#	Article	IF	CITATIONS
37	Reptational dynamics in dissipative particle dynamics simulations of polymer melts. Physical Review E, 2007, 75, 036713.	2.1	122
38	Insight into the Putative Specific Interactions between Cholesterol, Sphingomyelin, and Palmitoyl-Oleoyl Phosphatidylcholine. Biophysical Journal, 2007, 92, 1125-1137.	0.5	122
39	Redox-induced activation of the proton pump in the respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11571-11576.	7.1	122
40	Significance of Sterol Structural Specificity. Journal of Biological Chemistry, 2006, 281, 348-355.	3 . 4	121
41	Tilt:Â Major Factor in Sterols' Ordering Capability in Membranes. Journal of Physical Chemistry B, 2006, 110, 25562-25564.	2.6	118
42	Role of sterol type on lateral pressure profiles of lipid membranes affecting membrane protein functionality: Comparison between cholesterol, desmosterol, 7-dehydrocholesterol and ketosterol. Journal of Structural Biology, 2007, 159, 311-323.	2.8	117
43	An efficient auxin-inducible degron system with low basal degradation in human cells. Nature Methods, 2019, 16, 866-869.	19.0	117
44	Influence of Chain Length and Unsaturation on Sphingomyelin Bilayers. Biophysical Journal, 2006, 90, 851-863.	0.5	116
45	Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter, 2009, 5, 4433.	2.7	116
46	Mechanism of allosteric regulation of \hat{I}^2 2-adrenergic receptor by cholesterol. ELife, 2016, 5, .	6.0	115
47	Microscopic Mechanism for Cold Denaturation. Physical Review Letters, 2008, 100, 118101.	7.8	114
48	Composition and lipid spatial distribution of HDL particles in subjects with low and high HDL-cholesterol. Journal of Lipid Research, 2010, 51, 2341-2351.	4.2	111
49	Towards better integrators for dissipative particle dynamics simulations. Physical Review E, 2000, 62, R7611-R7614.	2.1	110
50	Influence of DPH on the Structure and Dynamics of a DPPC Bilayer. Biophysical Journal, 2005, 88, 3398-3410.	0.5	110
51	Ion Leakage through Transient Water Pores in Protein-Free Lipid Membranes Driven by Transmembrane Ionic Charge Imbalance. Biophysical Journal, 2007, 92, 1878-1890.	0.5	108
52	Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel. PLoS Computational Biology, 2009, 5, e1000289.	3.2	108
53	Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie, 2008, 90, 930-938.	2.6	106
54	Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8977-E8986.	7.1	106

#	Article	IF	Citations
55	Cholesterol Induces Specific Spatial and Orientational Order in Cholesterol/Phospholipid Membranes. PLoS ONE, 2010, 5, e11162.	2.5	101
56	What Happens if Cholesterol Is Made Smoother. Biophysical Journal, 2007, 92, 3346-3357.	0.5	99
57	Impact of cholesterol on voids in phospholipid membranes. Journal of Chemical Physics, 2004, 121, 12676.	3.0	94
58	Influence of Ethanol on Lipid Membranes:  From Lateral Pressure Profiles to Dynamics and Partitioning. Journal of Physical Chemistry B, 2008, 112, 4131-4139.	2.6	94
59	Atomistic Simulations of Functional Au ₁₄₄ (SR) ₆₀ Gold Nanoparticles in Aqueous Environment. Journal of Physical Chemistry C, 2012, 116, 9805-9815.	3.1	94
60	Concerted diffusion of lipids in raft-like membranes. Faraday Discussions, 2010, 144, 411-430.	3.2	92
61	Distribution, Orientation, and Dynamics of DPH Probes in DPPC Bilayer. Journal of Physical Chemistry B, 2004, 108, 13438-13448.	2.6	91
62	Membrane Potential and Electrostatics of Phospholipid Bilayers with Asymmetric Transmembrane Distribution of Anionic Lipids. Journal of Physical Chemistry B, 2008, 112, 4629-4634.	2.6	88
63	Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition. Journal of the American Chemical Society, 2017, 139, 4019-4024.	13.7	87
64	Redox-coupled quinone dynamics in the respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8413-E8420.	7.1	84
65	Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. Journal of Cell Biology, 2020, 219, .	5.2	84
66	Lipid Transmembrane Asymmetry and Intrinsic Membrane Potential:Â Two Sides of the Same Coin. Journal of the American Chemical Society, 2007, 129, 5358-5359.	13.7	83
67	Nanoscale Membrane Domain Formation Driven by Cholesterol. Scientific Reports, 2017, 7, 1143.	3.3	83
68	Role of Lipids in Spheroidal High Density Lipoproteins. PLoS Computational Biology, 2010, 6, e1000964.	3.2	81
69	Structure of Spheroidal HDL Particles Revealed by Combined Atomistic and Coarse-Grained Simulations. Biophysical Journal, 2008, 94, 2306-2319.	0.5	80
70	On Coarse-Graining by the Inverse Monte Carlo Method: Dissipative Particle Dynamics Simulations Made to a Precise Tool in Soft Matter Modeling. Soft Materials, 2002, 1, 121-137.	1.7	78
71	Mechanism for translocation of fluoroquinolones across lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2563-2571.	2.6	76
72	Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 281-288.	2.6	76

#	Article	IF	Citations
73	Effect of Sphingomyelin Headgroup Size on Molecular Properties andÂlnteractions with Cholesterol. Biophysical Journal, 2010, 99, 3300-3308.	0.5	75
74	Replacing the Cholesterol Hydroxyl Group with the Ketone Group Facilitates Sterol Flip-Flop and Promotes Membrane Fluidity. Journal of Physical Chemistry B, 2008, 112, 1946-1952.	2.6	74
7 5	Atom-scale molecular interactions in lipid raft mixtures. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 122-135.	2.6	74
76	Molecular dynamics study of charged dendrimers in salt-free solution: Effect of counterions. Journal of Chemical Physics, 2006, 124, 094904.	3.0	73
77	<i>doGlycans</i> àê"Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS. Journal of Chemical Information and Modeling, 2017, 57, 2401-2406.	5.4	71
78	Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations. Journal of Physical Chemistry C, 2014, 118, 11131-11141.	3.1	69
79	Effect of Monovalent Salt on Cationic Lipid Membranes As Revealed by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2005, 109, 21126-21134.	2.6	67
80	Molecular Organization of the Tear Fluid Lipid Layer. Biophysical Journal, 2010, 99, 2559-2567.	0.5	67
81	Influence of Pyrene-Labeling on Fluid Lipid Membranes. Journal of Physical Chemistry B, 2006, 110, 15403-15410.	2.6	66
82	A MARTINI Coarse-Grained Model of a Thermoset Polyester Coating. Macromolecules, 2011, 44, 6198-6208.	4.8	66
83	Effect of Double Bond Position on Lipid Bilayer Properties:  Insight through Atomistic Simulations. Journal of Physical Chemistry B, 2007, 111, 11162-11168.	2.6	65
84	Diffusion of Integral Membrane Proteins in Protein-Rich Membranes. Journal of Physical Chemistry Letters, 2017, 8, 4308-4313.	4.6	65
85	Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints. Journal of Chemical Physics, 2007, 126, 075101.	3.0	63
86	Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: Methodological issues. Journal of Chemical Physics, 2009, 130, 215107.	3.0	63
87	Role of charged lipids in membrane structures — Insight given by simulations. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2322-2333.	2.6	63
88	Chapter 2 Electrostatics in Biomolecular Simulations: Where Are We Now and Where Are We Heading?. Current Topics in Membranes, 2008, 60, 49-89.	0.9	62
89	Role of Cardiolipins in the Inner Mitochondrial Membrane: Insight Gained through Atom-Scale Simulations. Journal of Physical Chemistry B, 2009, 113, 3413-3422.	2.6	62
90	Glycolipid Membranes through Atomistic Simulations:  Effect of Glucose and Galactose Head Groups on Lipid Bilayer Properties. Journal of Physical Chemistry B, 2007, 111, 10146-10154.	2.6	61

#	Article	IF	CITATIONS
91	How To Tackle the Issues in Free Energy Simulations of Long Amphiphiles Interacting with Lipid Membranes: Convergence and Local Membrane Deformations. Journal of Physical Chemistry B, 2014, 118, 3572-3581.	2.6	61
92	Role of Glycolipids in Lipid Rafts: A View through Atomistic Molecular Dynamics Simulations with Galactosylceramide. Journal of Physical Chemistry B, 2010, 114, 7797-7807.	2.6	60
93	Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome $\langle i \rangle c \langle j \rangle$ oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2040-2045.	7.1	59
94	Cholesterol under oxidative stress—How lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radical Biology and Medicine, 2015, 84, 30-41.	2.9	57
95	Strain hardening, avalanches, and strain softening in dense cross-linked actin networks. Physical Review E, 2008, 77, 051913.	2.1	56
96	Free Pyrene Probes in Gel and Fluid Membranes:  Perspective through Atomistic Simulations. Journal of Physical Chemistry B, 2007, 111, 3640-3650.	2.6	54
97	Significance of Cholesterol Methyl Groups. Journal of Physical Chemistry B, 2008, 112, 2922-2929.	2.6	54
98	Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc1 complex. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 769-778.	1.0	54
99	Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biology, 2021, 19, e3000998.	5.6	54
100	Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers. Langmuir, 2018, 34, 2565-2572.	3.5	53
101	Systematic coarse graining from structure using internal states: Application to phospholipid/cholesterol bilayer. Journal of Chemical Physics, 2009, 131, 055101.	3.0	51
102	Strong preferences of dopamine and <scp>l</scp> â€dopa towards lipid head group: importance of lipid composition and implication for neurotransmitter metabolism. Journal of Neurochemistry, 2012, 122, 681-690.	3.9	51
103	Modeling of the Triglyceride-Rich Core in Lipoprotein Particles. Journal of Physical Chemistry B, 2008, 112, 13772-13782.	2.6	50
104	Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes. PLoS ONE, 2014, 9, e103743.	2.5	50
105	Influence ofcisdouble-bond parametrization on lipid membrane properties: How seemingly insignificant details in force-field change even qualitative trends. Journal of Chemical Physics, 2008, 129, 105103.	3.0	49
106	Do Lipids Retard the Evaporation of the Tear Fluid?., 2012, 53, 6442.		49
107	Lipid Exchange Mechanism of the Cholesteryl Ester Transfer Protein Clarified by Atomistic and Coarse-grained Simulations. PLoS Computational Biology, 2012, 8, e1002299.	3.2	49
108	Complexes Comprised of Charged Dendrimers, Linear Polyelectrolytes, and Counterions: Insight through Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2008, 41, 4961-4968.	4.8	48

#	Article	IF	CITATIONS
109	Protein Shape Change Has a Major Effect on the Gating Energy of a Mechanosensitive Channel. Biophysical Journal, 2011, 100, 1651-1659.	0.5	48
110	Selective effect of cell membrane on synaptic neurotransmission. Scientific Reports, 2016, 6, 19345.	3.3	48
111	Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids. Soft Matter, 2011, 7, 8135.	2.7	47
112	PEGylated Liposomes as Carriers of Hydrophobic Porphyrins. Journal of Physical Chemistry B, 2015, 119, 6646-6657.	2.6	47
113	Distribution and dynamics of quinones in the lipid bilayer mimicking the inner membrane of mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2116-2122.	2.6	47
114	Lessons from the biophysics of interfaces: Lung surfactant and tear fluid. Progress in Retinal and Eye Research, 2011, 30, 204-215.	15.5	46
115	Atomistic simulations of anionic Au144(SR)60 nanoparticles interacting with asymmetric model lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2852-2860.	2.6	46
116	Experimental determination and computational interpretation of biophysical properties of lipid bilayers enriched by cholesteryl hemisuccinate. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 422-432.	2.6	45
117	How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers?. Journal of Molecular Modeling, 2014, 20, 2121.	1.8	44
118	Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis. Molecular Biology of the Cell, 2015, 26, 1764-1781.	2.1	44
119	Realâ€Time Translocation of Fullerene Reveals Cell Contraction. Small, 2008, 4, 1986-1992.	10.0	43
120	Comparison of cholesterol and its direct precursors along the biosynthetic pathway: Effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers. Journal of Chemical Physics, 2008, 129, 154508.	3.0	42
121	Free Volume Theory Applied to Lateral Diffusion in Langmuir Monolayers: Atomistic Simulations for a Protein-Free Model of Lung Surfactant. Langmuir, 2010, 26, 15436-15444.	3.5	42
122	Interfacial Tension and Surface Pressure of High Density Lipoprotein, LowÂDensity Lipoprotein, and Related Lipid Droplets. Biophysical Journal, 2012, 103, 1236-1244.	0.5	42
123	Mitochondrial Membranes with Mono- and Divalent Salt: Changes Induced by Salt Ions on Structure and Dynamics. Journal of Physical Chemistry B, 2009, 113, 15513-15521.	2.6	41
124	Transient Ordered Domains in Single-Component Phospholipid Bilayers. Physical Review Letters, 2006, 97, 238102.	7.8	40
125	The impact of lipid composition on the stability of the tear fluid lipid layer. Soft Matter, 2012, 8, 5826.	2.7	40
126	Structural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equilibria, 2004, 225, 63-68.	2.5	39

#	Article	IF	Citations
127	Long-range interactions and parallel scalability in molecular simulations. Computer Physics Communications, 2007, 176, 14-22.	7.5	39
128	Effects of DPH on DPPCâ^'Cholesterol Membranes with Varying Concentrations of Cholesterol: From Local Perturbations to Limitations in Fluorescence Anisotropy Experiments. Journal of Physical Chemistry B, 2010, 114, 2704-2711.	2.6	39
129	Key role of water in proton transfer at the Qo-site of the cytochrome bc1 complex predicted by atomistic molecular dynamics simulations. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 761-768.	1.0	39
130	Ion Dynamics in Cationic Lipid Bilayer Systems in Saline Solutions. Journal of Physical Chemistry B, 2009, 113, 9226-9234.	2.6	38
131	The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress, 2017, 1, 90-106.	3.2	37
132	Interaction of Hematoporphyrin with Lipid Membranes. Journal of Physical Chemistry B, 2012, 116, 4889-4897.	2.6	36
133	Molecular Dynamics Simulations Reveal Fundamental Role of Water As Factor Determining Affinity of Binding of β-Blocker Nebivolol to β2-Adrenergic Receptor. Journal of Physical Chemistry B, 2010, 114, 8374-8386.	2.6	35
134	N- and O-methylation of sphingomyelin markedly affects its membrane properties and interactions with cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1179-1186.	2.6	35
135	Lipid Simulations: A Perspective on Lipids in Action. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004655-a004655.	5.5	35
136	The challenges of understanding glycolipid functions: An open outlook based on molecular simulations. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1130-1145.	2.4	35
137	How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane?. Chemistry and Physics of Lipids, 2018, 214, 15-23.	3.2	35
138	The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers. Small, 2019, 15, e1805046.	10.0	35
139	Phase Partitioning of GM1 and Its Bodipy-Labeled Analog Determine Their Different Binding to Cholera Toxin. Frontiers in Physiology, 2017, 8, 252.	2.8	34
140	Response to Comment by Almeida et al.: Free Area Theories for Lipid Bilayersâ€"Predictive or Not?. Biophysical Journal, 2005, 89, 745-752.	0.5	33
141	Atomistic Simulations of Phosphatidylcholines and Cholesteryl Esters in High-Density Lipoprotein-Sized Lipid Droplet and Trilayer: Clues to Cholesteryl Ester Transport and Storage. Biophysical Journal, 2009, 96, 4099-4108.	0.5	33
142	Glucosylceramide modifies the LPS-induced inflammatory response in macrophages and the orientation of the LPS/TLR4 complex in silico. Scientific Reports, 2018, 8, 13600.	3.3	33
143	High Density Lipoprotein Structural Changes and Drug Response in Lipidomic Profiles following the Long-Term Fenofibrate Therapy in the FIELD Substudy. PLoS ONE, 2011, 6, e23589.	2.5	33
144	Asymmetric nature of lateral pressure profiles in supported lipid membranes and its implications for membrane protein functions. Soft Matter, 2009, 5, 3258.	2.7	32

#	Article	IF	CITATIONS
145	Probing Biomembranes with Positrons. Journal of Physical Chemistry B, 2009, 113, 1810-1812.	2.6	31
146	How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2436-2445.	2.6	31
147	Understanding the Role of Lipids in Signaling Through Atomistic and Multiscale Simulations of Cell Membranes. Annual Review of Biophysics, 2019, 48, 421-439.	10.0	31
148	The Integrin Receptor in Biologically Relevant Bilayers: Insights from Molecular Dynamics Simulations. Journal of Membrane Biology, 2017, 250, 337-351.	2.1	29
149	Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. Journal of Molecular Biology, 2020, 432, 3251-3268.	4.2	29
150	Role of Neutral Lipids in Tear Fluid Lipid Layer: Coarse-Grained Simulation Study. Langmuir, 2012, 28, 17092-17100.	3.5	27
151	PIP2 and Talin Join Forces to Activate Integrin. Journal of Physical Chemistry B, 2015, 119, 12381-12389.	2.6	27
152	Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin. PLoS Computational Biology, 2017, 13, e1005831.	3.2	27
153	Effect of PEGylation on Drug Entry into Lipid Bilayer. Journal of Physical Chemistry B, 2014, 118, 144-151.	2.6	26
154	Modeling Lipid–Sterol Bilayers: Applications to Structural Evolution, Lateral Diffusion, and Rafts. Methods in Enzymology, 2004, 383, 198-229.	1.0	25
155	Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics. Journal of Physical Chemistry B, 2012, 116, 269-276.	2.6	25
156	Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. Journal of Biological Chemistry, 2017, 292, 14438-14455.	3.4	25
157	Role of subunit III and its lipids in the molecular mechanism of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 690-697.	1.0	24
158	Bobbing of Oxysterols: Molecular Mechanism for Translocation of Tail-Oxidized Sterols through Biological Membranes. Journal of Physical Chemistry Letters, 2018, 9, 1118-1123.	4.6	24
159	Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes. Langmuir, 2020, 36, 10438-10447.	3.5	24
160	Atomistic Simulation Studies of Cholesteryl Oleates: Model for the Core of Lipoprotein Particles. Biophysical Journal, 2006, 90, 2247-2257.	0.5	23
161	Interaction of Fusidic Acid with Lipid Membranes: Implications to the Mechanism of Antibiotic Activity. Biophysical Journal, 2006, 91, 1787-1799.	0.5	23
162	Intrinsic Potential of Cell Membranes: Opposite Effects of Lipid Transmembrane Asymmetry and Asymmetric Salt Ion Distribution. Journal of Physical Chemistry B, 2009, 113, 7194-7198.	2.6	23

#	Article	IF	CITATIONS
163	Atomistic determinants of co-enzyme Q reduction at the Qi-site of the cytochrome bc1 complex. Scientific Reports, 2016, 6, 33607.	3.3	23
164	Why is the <i>sn</i> -2 Chain of Monounsaturated Glycerophospholipids Usually Unsaturated whereas the <i>sn</i> -1 Chain Is Saturated? Studies of 1-Stearoyl-2-oleoyl- <i>sn</i> -glycero-3-phosphatidylcholine (SOPC) and 1-Oleoyl-2-stearoyl- <i>sn</i> -glycero-3-phosphatidylcholine (OSPC) Membranes with and without Cholesterol. Journal of Physical Chemistry B, 2009, 113, 8347-8356.	2.6	22
165	Glycosylation and Lipids Working in Concert Direct CD2 Ectodomain Orientation and Presentation. Journal of Physical Chemistry Letters, 2017, 8, 1060-1066.	4.6	22
166	Complexity of seemingly simple lipid nanodiscs. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183420.	2.6	22
167	Ceramide-1-Phosphate, in Contrast to Ceramide, Is Not Segregated into Lateral Lipid Domains in Phosphatidylcholine Bilayers. Biophysical Journal, 2009, 96, 2216-2226.	0.5	21
168	Calcium Assists Dopamine Release by Preventing Aggregation on the Inner Leaflet of Presynaptic Vesicles. ACS Chemical Neuroscience, 2017, 8, 1242-1250.	3.5	21
169	Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor. ACS Chemical Neuroscience, 2020, 11, 1914-1924.	3.5	21
170	Exploring the effect of xenon on biomembranes. Cellular and Molecular Biology Letters, 2005, 10, 563-9.	7.0	21
171	Structural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equilibria, 2005, 228-229, 135-140.	2.5	20
172	How endoglucanase enzymes act on cellulose nanofibrils: role of amorphous regions revealed by atomistic simulations. Cellulose, 2015, 22, 2911-2925.	4.9	20
173	Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 870-878.	2.6	20
174	What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?. Journal of Physical Chemistry Letters, 2016, 7, 4585-4590.	4.6	19
175	Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications. Molecular Pharmaceutics, 2017, 14, 1057-1070.	4.6	19
176	On Atomistic Models for Molecular Oxygen. Journal of Physical Chemistry B, 2017, 121, 518-528.	2.6	19
177	Quantitative Assessment of Methods Used To Obtain Rate Constants from Molecular Dynamics Simulations—Translocation of Cholesterol across Lipid Bilayers. Journal of Chemical Theory and Computation, 2018, 14, 3840-3848.	5.3	18
178	Understanding the Functional Properties of Lipid Heterogeneity in Pulmonary Surfactant Monolayers at the Atomistic Level. Frontiers in Cell and Developmental Biology, 2020, 8, 581016.	3.7	18
179	N-Glycosylation can selectively block or foster different receptor–ligand binding modes. Scientific Reports, 2021, 11, 5239.	3.3	18
180	Conformational analysis of lipid molecules by self-organizing maps. Journal of Chemical Physics, 2007, 126, 054707.	3.0	17

#	Article	IF	CITATIONS
181	Effect of Galactosylceramide on the Dynamics of Cholesterol-Rich Lipid Membranes. Journal of Physical Chemistry B, 2011, 115, 14424-14434.	2.6	17
182	Interaction of C70 fullerene with the Kv1.2 potassium channel. Physical Chemistry Chemical Physics, 2012, 14, 12526.	2.8	17
183	How Anacetrapib Inhibits the Activity of the Cholesteryl Ester Transfer Protein? Perspective through Atomistic Simulations. PLoS Computational Biology, 2014, 10, e1003987.	3.2	17
184	Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience, 2018, 384, 214-223.	2.3	17
185	Crystalline Wax Esters Regulate the Evaporation Resistance of Tear Film Lipid Layers Associated with Dry Eye Syndrome. Journal of Physical Chemistry Letters, 2019, 10, 3893-3898.	4.6	17
186	Parameterization of the prosthetic redox centers of the bacterial cytochrome bc 1 complex for atomistic molecular dynamics simulations. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	16
187	Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1406-1411.	2.6	16
188	How To Minimize Artifacts in Atomistic Simulations of Membrane Proteins, Whose Crystal Structure Is Heavily Engineered: $\hat{l}^2 < \text{sub} > 2 < / \text{sub} > \text{Adrenergic Receptor in the Spotlight. Journal of Chemical Theory and Computation, 2015, 11, 3432-3445.}$	5.3	16
189	Properties of the Membrane Binding Component of Catechol- <i>O</i> hi>-methyltransferase Revealed by Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 13541-13550.	2.6	15
190	Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters. Data in Brief, 2016, 7, 1171-1174.	1.0	15
191	Molecular mechanism for inhibition of twinfilin by phosphoinositides. Journal of Biological Chemistry, 2018, 293, 4818-4829.	3.4	15
192	Diffusion in Membranes., 2005,, 471-509.		15
193	Highâ€content imaging and structureâ€based predictions reveal functional differences between Niemannâ€Pick C1 variants. Traffic, 2020, 21, 386-397.	2.7	14
194	The Devil Is in the Details: What Do We Really Track in Single-Particle Tracking Experiments of Diffusion in Biological Membranes?. Journal of Physical Chemistry Letters, 2019, 10, 1005-1011.	4.6	13
195	Drug-Lipid Membrane Interaction Mechanisms Revealed Through Molecular Simulations. Current Physical Chemistry, 2012, 2, 379-400.	0.2	13
196	Modeling glycolipids: take one. Cellular and Molecular Biology Letters, 2005, 10, 625-30.	7.0	13
197	Temperature-induced structural transition in-situ in porcine lens — Changes observed in void size distribution. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 958-965.	2.6	12
198	Lipid membranes: Theory and simulations bridged to experiments. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2251-2253.	2.6	12

#	Article	IF	Citations
199	Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury: An All-Atom Molecular Dynamics Study. Journal of Membrane Biology, 2018, 251, 521-534.	2.1	12
200	Revealing structural and dynamical properties of high density lipoproteins through molecular simulations. Soft Matter, 2012, 8, 1262-1267.	2.7	11
201	Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking. Physical Biology, 2009, 6, 046004.	1.8	10
202	Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals. PLoS ONE, 2014, 9, e114490.	2.5	9
203	A cholesterol analog stabilizes the human \hat{l}^2 ₂ -adrenergic receptor nonlinearly with temperature. Science Signaling, 2022, 15, .	3.6	8
204	How to link pyrene to its host lipid to minimize the extent of membrane perturbations and to optimize pyrene dimer formation. Chemistry and Physics of Lipids, 2014, 177, 19-25.	3.2	7
205	Machine learning in the analysis of biomolecular simulations. Advances in Physics: X, 2022, 7, .	4.1	7
206	Oxidation of Cholesterol Does Not Alter Significantly Its Uptake into High-Density Lipoprotein Particles. Journal of Physical Chemistry B, 2015, 119, 4594-4600.	2.6	6
207	Building Synthetic Sterols Computationally – Unlocking the Secrets of Evolution?. Frontiers in Bioengineering and Biotechnology, 2015, 3, 121.	4.1	5
208	How Well Does BODIPY-Cholesteryl Ester Mimic Unlabeled Cholesteryl Esters in High Density Lipoprotein Particles?. Journal of Physical Chemistry B, 2015, 119, 15848-15856.	2.6	4
209	Collective Dynamics in Lipid Membranes: From Pore Formation to Flip-Flops., 2009,, 121-139.		3
210	Biogenesis of Nascent High Density Lipoprotein Particles. Structure, 2015, 23, 1153-1154.	3.3	3
211	Modeling of Lipid Membranes and Lipoproteins. , 2014, , 299-318.		2
212	Reply to the comment by Graziano on "The hydrophobic effect and its role in cold denaturation― Cryobiology, 2010, 60, 356-357.	0.7	1
213	Systematic Approach to Coarse-Graining of Molecular Descriptions and Interactions with Applications to Lipid Membranes. , 2008, , 83-106.		1
214	SoftSimu2002 - Novel Methods in Soft Matter Simulations. Applied Rheology, 2002, 12, 200-201.	5.2	0
215	Effect of replacement of cholesterol hydroxyl group by ketone group. Chemistry and Physics of Lipids, 2007, 149, S41-S42.	3.2	0
216	Visualization of Complex Processes in Lipid Systems Using Computer Simulations and Molecular Graphics., 2009, 580, 317-338.		0