Chunyi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1089016/publications.pdf

Version: 2024-02-01

	236833	289141
1,965	25	40
citations	h-index	g-index
0.5	0.5	000
85	85	839
docs citations	times ranked	citing authors
	1,965 citations 85 docs citations	1,965 25 citations h-index 85 85

#	Article	IF	CITATIONS
1	Deer antler – A novel model for studying organ regeneration in mammals. International Journal of Biochemistry and Cell Biology, 2014, 56, 111-122.	1.2	110
2	Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). The Anatomical Record, 1994, 239, 198-215.	2.3	96
3	Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. The Anatomical Record, 2002, 268, 125-130.	2.3	95
4	Red Deer Cloned from Antler Stem Cells and Their Differentiated Progeny1. Biology of Reproduction, 2007, 77, 384-394.	1.2	94
5	Histological examination of antler regeneration in red deer (Cervus elaphus). The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 282A, 163-174.	2.0	89
6	Adult Stem Cells and Mammalian Epimorphic Regeneration-Insights from Studying Annual Renewal of Deer Antlers. Current Stem Cell Research and Therapy, 2009, 4, 237-251.	0.6	86
7	Improbable appendages: Deer antler renewal as a unique case of mammalian regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 535-542.	2.3	85
8	Deer antler regeneration: A stem cellâ€based epimorphic process. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 51-62.	3 . 6	62
9	Identification of key tissue type for antler regeneration through pedicle periosteum deletion. Cell and Tissue Research, 2007, 328, 65-75.	1.5	55
10	Histological studies of pedicle skin formation and its transformation to antler velvet in red deer (Cervus elaphus). The Anatomical Record, 2000, 260, 62-71.	2.3	54
11	Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ—deer antler. Cell Death and Disease, 2019, 10, 443.	2.7	50
12	Proteomes and Signalling Pathways of Antler Stem Cells. PLoS ONE, 2012, 7, e30026.	1.1	50
13	Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discovery, 2022, 8, 6.	3.1	50
14	Morphological observation of antler regeneration in red deer (Cervus elaphus). Journal of Morphology, 2004, 262, 731-740.	0.6	48
15	Effects of insulin-like growth factor 1 and testosterone on the proliferation of antlerogenic cells in vitro., 1999, 284, 82-90.		39
16	Histogenetic aspects of deer antler development. Frontiers in Bioscience - Elite, 2013, E5, 479-489.	0.9	39
17	Nerve Growth Factor mRNA Expression in the Regenerating Antler Tip of Red Deer (Cervus elaphus). PLoS ONE, 2007, 2, e148.	1.1	39
18	Vascular localization and proliferation in the growing tip of the deer antler. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 973-981.	2.0	36

#	Article	IF	CITATIONS
19	Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein and Cell, 2022, 13, 220-226.	4.8	36
20	Antler regeneration: a dependent process of stem tissue primed via interaction with its enveloping skin. Journal of Experimental Zoology, 2007, 307A, 95-105.	1.2	35
21	iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells. International Journal of Molecular Sciences, 2016, 17, 1778.	1.8	32
22	Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (<i>Cervus) Tj ETQq0 0 0 rgBT Genes, Genomes, Genetics, 2017, 7, 3169-3176.</i>	/Overlock 0.8	10 Tf 50 62 32
23	Tissue interactions and antlerogenesis: New findings revealed by a xenograft approach. The Journal of Experimental Zoology, 2001, 290, 18-30.	1.4	31
24	Antler stem cell-conditioned medium stimulates regenerative wound healing in rats. Stem Cell Research and Therapy, 2019, 10, 326.	2.4	31
25	Transcriptomic analysis of different tissue layers in antler growth Center in Sika Deer (Cervus) Tj ETQq1 1 0.78431	4 rgBT /Ov 1.2	verlock 10⊤ 29
26	The regenerating antler blastema the derivative of stem cells resident in a pedicle stump. Frontiers in Bioscience - Landmark, 2016, 21, 455-467.	3.0	28
27	Pedicle and antler development following sectioning of the sensory nerves to the antlerogenic region of red deer (Cervus elaphus). The Journal of Experimental Zoology, 1993, 267, 188-197.	1.4	27
28	Electron microscopic studies of antlerogenic cells from five developmental stages during pedicle and early antler formation in red deer (Cervus elaphus)., 1998, 252, 587-599.		23
29	Anti-tumour activity of deer growing antlers and its potential applications in the treatment of malignant gliomas. Scientific Reports, 2021, 11, 42.	1.6	23
30	Role of heterotypic tissue interactions in deer pedicle and first antler formationâ€"revealed via a membrane insertion approach. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 267-277.	0.6	19
31	Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative RNA-seq. Stem Cell Research and Therapy, 2018, 9, 292.	2.4	17
32	Cell Cycle Genes PEDF and CDKN1C in Growing Deer Antlers. Anatomical Record, 2007, 290, 994-1004.	0.8	16
33	Development of a nude mouse model for the study of antlerogenesis—mechanism of tissue interactions and ossification pathway. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 118-135.	0.6	16
34	Morphogenetic aspects of deer antler development. Frontiers in Bioscience - Elite, 2012, E4, 1836-1842.	0.9	16
35	MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration. Molecular Genetics and Genomics, 2016, 291, 943-955.	1.0	16
36	Deer thymosin beta 10 functions as a novel factor for angiogenesis and chondrogenesis during antler growth and regeneration. Stem Cell Research and Therapy, 2018, 9, 166.	2.4	16

#	Article	IF	CITATIONS
37	Transplanted Antler Stem Cells Stimulated Regenerative Healing of Radiation-induced Cutaneous Wounds in Rats. Cell Transplantation, 2020, 29, 096368972095154.	1.2	16
38	The periosteum: a simple tissue with many faces, with special reference to the antler-lineage periostea. Biology Direct, 2021 , 16 , 17 .	1.9	16
39	Lentiviral-Mediated RNAi Knockdown of Cbfa1 Gene Inhibits Endochondral Ossification of Antler Stem Cells in Micromass Culture. PLoS ONE, 2012, 7, e47367.	1.1	15
40	Extracellular vesicles derived from umbilical cord mesenchymal stromal cells alleviate pulmonary fibrosis by means of transforming growth factor- \hat{l}^2 signaling inhibition. Stem Cell Research and Therapy, 2021, 12, 230.	2.4	15
41	Morphogenetic aspects of deer antler development. Frontiers in Bioscience - Elite, 2012, E4, 1836.	0.9	14
42	Differential effects of the PI3K AKT pathway on antler stem cells for generation and regeneration of antlers i in vitro i. Frontiers in Bioscience - Landmark, 2018, 23, 1848-1863.	3.0	14
43	Quantitative proteomics analysis of deer antlerogenic periosteal cells reveals potential bioactive factors in velvet antlers. Journal of Chromatography A, 2020, 1609, 460496.	1.8	14
44	Antler stem cells as a novel stem cell source for reducing liver fibrosis. Cell and Tissue Research, 2020, 379, 195-206.	1.5	14
45	Quantitative proteomic analysis of deer antler stem cells as a model of mammalian organ regeneration. Journal of Proteomics, 2019, 195, 98-113.	1.2	12
46	Deer antler extracts reduce amyloid-beta toxicity in a Caenorhabditis elegans model of Alzheimer's disease. Journal of Ethnopharmacology, 2022, 285, 114850.	2.0	12
47	Pedicle and antler regeneration following antlerogenic tissue removal in red deer(Cervus elaphus). The Journal of Experimental Zoology, 1994, 269, 37-44.	1.4	11
48	Proteomic Analysis of Plasma Membrane Proteins of Antler Stem Cells Using Label-Free LC–MS/MS. International Journal of Molecular Sciences, 2018, 19, 3477.	1.8	11
49	Stem cells responsible for deer antler regeneration are unable to recapitulate the process of first antler development—revealed through intradermal and subcutaneous tissue transplantation. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 552-570.	0.6	10
50	Stem cells, stem cell niche and antler development. Animal Production Science, 2011, 51, 267.	0.6	10
51	Mapping the morphogenetic potential of antler fields through deleting and transplanting subregions of antlerogenic periosteum in sika deer (<i>Cervus nippon</i>). Journal of Anatomy, 2012, 220, 131-143.	0.9	10
52	Direct localisation of molecules in tissue sections of growing antler tips using MALDI imaging. Molecular and Cellular Biochemistry, 2015, 409, 225-241.	1.4	10
53	Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set. Mitochondrial DNA, 2015, 26, 373-379.	0.6	10
54	Identification of proteins that mediate the role of androgens in antler regeneration using label free proteomics in sika deer (Cervus nippon). General and Comparative Endocrinology, 2019, 283, 113235.	0.8	10

#	Article	IF	Citations
55	Chromosome-level genome assembly of Tarim red deer, Cervus elaphus yarkandensis. Scientific Data, 2020, 7, 187.	2.4	10
56	Effects of unilateral cranial sympathectomy either alone or with sensory nerve sectioning on pedicle growth in red deer (Cervus elaphus). The Journal of Experimental Zoology, 1995, 271, 131-138.	1.4	8
57	Single-cell transcriptome provides novel insights into antler stem cells, a cell type capable of mammalian organ regeneration. Functional and Integrative Genomics, 2019, 19, 555-564.	1.4	8
58	PTNâ^PTPRZ signalling is involved in deer antler stem cell regulation during tissue regeneration. Journal of Cellular Physiology, 2021, 236, 3752-3769.	2.0	8
59	Effects of p21 Gene Down-Regulation through RNAi on Antler Stem Cells In Vitro. PLoS ONE, 2015, 10, e0134268.	1.1	7
60	Cloning and Characterization of a <i>Nanog</i> Pseudogene in Sika Deer (<i>Cervus nippon</i>). DNA and Cell Biology, 2016, 35, 576-584.	0.9	7
61	Substances for regenerative wound healing during antler renewal stimulated scar-less restoration of rat cutaneous wounds. Cell and Tissue Research, 2021, 386, 99-116.	1.5	7
62	Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells. BioMed Research International, 2013, 2013, 1-21.	0.9	6
63	Deer antlers: traditional Chinese medicine use and recent pharmaceuticals. Animal Production Science, 2020, 60, 1233.	0.6	6
64	Velvet Antler Peptides Reduce Scarring via Inhibiting the TGF- \hat{l}^2 Signaling Pathway During Wound Healing. Frontiers in Medicine, 2021, 8, 799789.	1.2	6
65	Analysis of Genomewide DNA Methylation Reveals Differences in DNA Methylation Levels between Dormant and Naturally as well as Artificially Potentiated Pedicle Periosteum of Sika Deer (<i>Cervus) Tj ETQq1 1 326, 375-383.</i>	0.784314 0 . 6	rgBT /Overlo
66	An examination of the origin and evolution of additional tandem repeats in the mitochondrial DNA control region of Japanese sika deer (Cervus Nippon). Mitochondrial DNA, 2016, 27, 276-281.	0.6	5
67	Custom-built tools for the study of deer antler biology. Frontiers in Bioscience - Landmark, 2017, 22, 1622-1633.	3.0	5
68	Genome-wide analysis of DNA methylation in five tissues of sika deer (Cervus nippon). Gene, 2018, 645, 48-54.	1.0	5
69	Development of Diagnostic SNP Markers To Monitor Hybridization Between Sika Deer (Cervus nippon) and Wapiti (Cervus elaphus). G3: Genes, Genomes, Genetics, 2018, 8, 2173-2179.	0.8	5
70	Identification of interactive molecules between antler stem cells and dermal papilla cells using an in vitro co-culture system. Journal of Molecular Histology, 2020, 51, 15-31.	1.0	5
71	Complete mitochondrial genome of the muskrat (Ondatra zibethicus) and its unique phylogenetic position estimated in Cricetidae. Mitochondrial DNA Part B: Resources, 2018, 3, 296-298.	0.2	4
72	S100A4: a novel partner for heat shock protein 47 in antler stem cells and insight into the calcium ion-induced conformational changes. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2068-2079.	2.0	2

#	Article	IF	CITATIONS
73	Molecular evidence for adaptive evolution of olfactory-related genes in cervids. Genes and Genomics, 2020, 42, 355-360.	0.5	2
74	Residual antler periosteum holds the potential to partially regenerate lost antler tissue. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2021, 335, 386-395.	0.9	2
75	Antler Stem Cells Sustain Regenerative Wound Healing in Deer and in Rats. Journal of Regenerative Biology and Medicine, 0, , .	0.0	2
76	Calreticulin Identified as One of the Androgen Response Genes That Trigger Full Regeneration of the Only Capable Mammalian Organ, the Deer Antler. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
77	Association analysis of thirtyâ€one single nucleotide polymorphisms with antler weight in sika deer. Animal Genetics, 2020, 51, 990-991.	0.6	1
78	Reclassification of velvet antler portions following transcriptomic analysis. Animal Production Science, 2020, 60, 1364.	0.6	0
79	Design of a universal primer pair for the identification of deer species. Conservation Genetics Resources, 2021, 13, 9-12.	0.4	0
80	Effects of macrophage-conditioned medium on sika deer (Cervus nippon) antler stem cells. Animal Production Science, 2020, 60, 1326.	0.6	0
81	Cross-Species Analysis Reveals Co-Expressed Genes Regulating Antler Development in Cervidae. Frontiers in Genetics, 0, 13 , .	1.1	0
82	Tracing the geographic origin of velvet antlers in China <i>via</i> stable isotope analyses. RSC Advances, 2022, 12, 17527-17535.	1.7	0
83	IGF1R and LOX Modules Are Related to Antler Growth Rate Revealed by Integrated Analyses of Genomics and Transcriptomics. Animals, 2022, 12, 1522.	1.0	O