Emir Dogdibegovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10889823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cationic Metalloâ€Polyelectrolytes for Robust Alkaline Anionâ€Exchange Membranes. Angewandte Chemie - International Edition, 2018, 57, 2388-2392.	13.8	163
2	High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels. Journal of Power Sources, 2014, 252, 79-84.	7.8	86
3	High performance metal-supported solid oxide fuel cells with infiltrated electrodes. Journal of Power Sources, 2019, 410-411, 91-98.	7.8	74
4	Progress in durability of metal-supported solid oxide fuel cells with infiltrated electrodes. Journal of Power Sources, 2019, 437, 226935.	7.8	42
5	Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications. Journal of Power Sources, 2020, 449, 227598.	7.8	33
6	Metal‣upported Solid Oxide Electrolysis Cell with Significantly Enhanced Catalysis. Energy Technology, 2019, 7, 1801154.	3.8	26
7	Scaleup and manufacturability of symmetric-structured metal-supported solid oxide fuel cells. Journal of Power Sources, 2021, 489, 229439.	7.8	25
8	Stability and Activity of (Pr _{1â€x} Nd _x) ₂ NiO ₄ as Cathodes for Solid Oxide Fuel Cells: I. Quantification of Phase Evolution in Pr ₂ NiO ₄ . Journal of the American Ceramic Society, 2016, 99, 2737-2741.	3.8	21
9	Cationic Metalloâ€Polyelectrolytes for Robust Alkaline Anionâ€Exchange Membranes. Angewandte Chemie, 2018, 130, 2412-2416.	2.0	20
10	Activity and Stability of (Pr _{1-x} Nd _x) ₂ NiO ₄ as Cathodes for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F99-F106.	2.9	18
11	Activity and Stability of (Pr _{1-x} Nd _x) ₂ NiO ₄ as Cathodes for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F1344-F1349.	2.9	15
12	Coupling Between Magnetic Exchange and Charge Activation in Cuâ€Đoped LaFeO 3. Journal of the American Ceramic Society, 2016, 99, 2035-2039.	3.8	11
13	The Role of Interlayer on the Catalytic Activity and Performance Stability of (Pr1-xNdx)2NiO4as Cathodes for Solid Oxide Fuel Cells. ECS Transactions, 2017, 78, 983-992.	0.5	8
14	Activity and Stability of (Pr1-xNdx)2NiO4as Cathodes for Solid Oxide Fuel Cells: Part V. In Situ Studies of Phase Evolution. Journal of the Electrochemical Society, 2017, 164, F1115-F1121.	2.9	8
15	Activity and Stability of (Pr _{1-x} Nd _x) ₂ NiO _{4+δ} as Cathodes for Oxide Fuel Cells: Part VI. The Role of Cu Dopant on the Structure and Electrochemical Properties. Journal of the Electrochemical Society, 2017, 164, F3131-F3139.	2.9	6
16	Role of mixed conducting Pr0.1Gd0.1Ce0.8O1.9-δ barrier layer on the promotion of SOFC performance. International Journal of Hydrogen Energy, 2022, 47, 1917-1924.	7.1	6
17	Innenrücktitelbild: Cationic Metalloâ€Polyelectrolytes for Robust Alkaline Anionâ€Exchange Membranes (Angew. Chem. 9/2018). Angewandte Chemie, 2018, 130, 2529-2529.	2.0	0