
Sajid Butt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10887160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 Nanoparticles as New Solar Light Active Photocatalyst. Scientific Reports, 2017, 7, 42493.	3.3	115
2	High-temperature thermoelectric properties of La and Fe co-doped Ca–Co–O misfit-layered cobaltites consolidated by spark plasma sintering. Journal of Alloys and Compounds, 2014, 588, 277-283.	5.5	79
3	High-temperature thermoelectric behaviors of Sn-doped n-type Bi2O2Se ceramics. Journal of Electroceramics, 2015, 34, 175-179.	2.0	74
4	Enhancement of thermoelectric performance in Cd-doped Ca ₃ Co ₄ O ₉ via spin entropy, defect chemistry and phonon scattering. Journal of Materials Chemistry A, 2014, 2, 19479-19487.	10.3	71
5	High Performance Oxides-Based Thermoelectric Materials. Jom, 2015, 67, 211-221.	1.9	71
6	Influence of Ag doping on thermoelectric properties of BiCuSeO. Journal of the European Ceramic Society, 2015, 35, 845-849.	5.7	70
7	Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Advances, 2015, 5, 69878-69885.	3.6	67
8	Influence of film thickness and In-doping on physical properties of CdS thin films. Journal of Alloys and Compounds, 2014, 587, 582-587.	5.5	59
9	Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides. RSC Advances, 2016, 6, 33789-33797.	3.6	48
10	Enhanced Thermoelectricity in High-Temperature β-Phase Copper(I) Selenides Embedded with Cu ₂ Te Nanoclusters. ACS Applied Materials & Interfaces, 2016, 8, 15196-15204.	8.0	44
11	One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. Journal of Alloys and Compounds, 2019, 786, 557-564.	5.5	40
12	Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site. Journal of Alloys and Compounds, 2017, 691, 572-577.	5.5	38
13	Enhancement of Thermoelectric Performance in Hierarchical Mesoscopic Oxide Composites of Ca ₃ Co ₄ O ₉ and La _{0.8} Sr _{0.2} CoO ₃ . Journal of the American Ceramic Society, 2015, 98. 1230-1235.	3.8	37
14	Electrical and Thermal Transport Behavior in Zn-Doped BiCuSeO Oxyselenides. Journal of Electronic Materials, 2015, 44, 1627-1631.	2.2	37
15	Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell applications. Journal of Alloys and Compounds, 2014, 609, 40-45.	5.5	32
16	Enhanced thermoelectric efficiency of Cu2â^'Se–Cu2S composite by incorporating Cu2S nanoparticles. Ceramics International, 2016, 42, 8395-8401.	4.8	30
17	Enhanced thermoelectric performance of heavy-metals (M: Ba, Pb) doped misfit-layered ceramics: (Ca2â~'xMxCoO3)0.62 (CoO2). Energy Conversion and Management, 2014, 83, 35-41.	9.2	26
18	Pronounced effect of ZnTe nanoinclusions on thermoelectric properties of Cu2â^'x Se chalcogenides. Science China Materials, 2016, 59, 135-143.	6.3	17

SAJID BUTT

#	Article	IF	CITATIONS
19	Optimization analysis of polyurethane based mixed matrix gas separation membranes by incorporation of gamma-cyclodextrin metal organic frame work. Chemical Papers, 2020, 74, 3527-3543.	2.2	17
20	Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit. AIP Advances, 2014, 4, .	1.3	16
21	Nanoscale heterogeneity in thermoelectrics: the occurrence of phase separation in Fe-doped Ca ₃ Co ₄ O ₉ . Physical Chemistry Chemical Physics, 2016, 18, 14580-14587.	2.8	11
22	Enhanced Thermoelectric Performance of SmBaCuFeO _{5+δ} /Ag Composite Ceramics. Journal of the American Ceramic Society, 2016, 99, 1266-1270.	3.8	10
23	Facile Development of Hybrid Bulk-Nanostructured SnSe/SnS for Antibacterial Activity with Negligible Cytotoxicity. Journal of Cluster Science, 2021, 32, 665-672.	3.3	7
24	Electrical and Thermal Conduction Behaviors in La‣ubstituted GdBaCuFeO 5+δ Ceramics. Journal of the American Ceramic Society, 2015, 98, 3179-3184.	3.8	6
25	Development of CZTS-sensitized TiO2 nanoparticles via p-SILAR: concomitant salvaging of photocatalytic SnO2 and CZTS. Journal of Materials Science: Materials in Electronics, 2020, 31, 17563-17573.	2.2	6
26	Outlining the beneficial photocatalytic effect of ZnS deposition in simplistically developed iron oxide nanocomposites of different stoichiometry. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2