
Robert Henry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10886947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyanogenesis in the Sorghum Genus: From Genotype to Phenotype. Genes, 2022, 13, 140.	2.4	7
2	New Hybrid Spikelet Sterility Gene Found in Interspecific Cross between Oryza sativa and O. meridionalis. Plants, 2022, 11, 378.	3.5	2
3	Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Molecular Ecology, 2022, 31, 2207-2222.	3.9	20
4	Reticulate Evolution in AA-Genome Wild Rice in Australia. Frontiers in Plant Science, 2022, 13, 767635.	3.6	2
5	Potential of Genome Editing to Capture Diversity From Australian Wild Rice Relatives. Frontiers in Genome Editing, 2022, 4, 875243.	5.2	3
6	Genetics and Genomics of African Rice (Oryza glaberrima Steud) Domestication. Rice, 2021, 14, 6.	4.0	13
7	Wheat Grain Transcriptome. , 2021, , 501-512.		0
8	Improving rice salt tolerance by precision breeding in a new era. Current Opinion in Plant Biology, 2021, 60, 101996.	7.1	61
9	Phylogenetic relationships in the <i>Sorghum</i> genus based on sequencing of the chloroplast and nuclear genes. Plant Genome, 2021, 14, e20123.	2.8	13
10	Identification of genes associated with chapatti quality using transcriptome analysis. Journal of Cereal Science, 2021, 101, 103276.	3.7	0
11	Transcriptome profiling of wheat genotypes under heat stress during grain-filling. Journal of Cereal Science, 2020, 91, 102895.	3.7	32
12	Genome-wide association studies for yield component traits in a macadamia breeding population. BMC Genomics, 2020, 21, 199.	2.8	25
13	Advances in Molecular Genetics and Genomics of African Rice (Oryza glaberrima Steud). Plants, 2019, 8, 376.	3.5	10
14	Segregation Distortion Observed in the Progeny of Crosses Between Oryza sativa and O. meridionalis Caused by Abortion During Seed Development. Plants, 2019, 8, 398.	3.5	8
15	Relationships between Iraqi Rice Varieties at the Nuclear and Plastid Genome Levels. Plants, 2019, 8, 481.	3.5	5
16	DIFFERENTIAL RESPONSE OF WHEAT GENOTYPES TO HEAT STRESS DURING GRAIN FILLING. Experimental Agriculture, 2019, 55, 818-827.	0.9	6
17	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	21.4	413
18	Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice. Plant Biotechnology Journal, 2018, 16, 100-110.	8.3	52

ROBERT HENRY

#	Article	IF	CITATIONS
19	A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nature Communications, 2018, 9, 2638.	12.8	299
20	Grain physical characteristic of the Australian wild rices. Plant Genetic Resources: Characterisation and Utilisation, 2017, 15, 409-420.	0.8	10
21	Comparison of Chapatti and Breadmaking Quality of Wheat Genotypes. Cereal Chemistry, 2017, 94, 409-416.	2.2	5
22	Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (<i>Oryza sativa</i> L.): a status review. Journal of the Science of Food and Agriculture, 2017, 97, 384-395.	3.5	123
23	Plant Genetic Resources. , 2017, , 15-29.		1
24	Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal, 2016, 14, 1095-1098.	8.3	221
25	Genomics Strategies for Germplasm Characterization and the Development of Climate Resilient Crops. , 2016, , 3-10.		2
26	Analysis of adaptive ribosomal gene diversity in wild plant populations from contrasting climatic environments. Plant Signaling and Behavior, 2012, 7, 602-604.	2.4	15
27	Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks. PLoS ONE, 2012, 7, e52820.	2.5	32
28	Genomics for Bioenergy Production. , 2012, , 21-29.		2
29	The Sugarcane Genome Challenge: Strategies for Sequencing a Highly Complex Genome. Tropical Plant Biology, 2011, 4, 145-156.	1.9	91
30	Eucalypts as a biofuel feedstock. Biofuels, 2011, 2, 639-657.	2.4	40
31	The role of plant biotechnology in bio-energy production. Plant Biotechnology Journal, 2010, 8, 243-243.	8.3	5
32	An Overview of Advances in Plant Genomics in the New Millennium. , 2010, , 1-23.		0
33	New tools for single nucleotide polymorphism (SNP) discovery and analysis accelerating plant biotechnology. Plant Biotechnology Journal, 2009, 7, 311-311.	8.3	22
34	Is Malting Barley Better Feed for Cattle than Feed Barley?. Journal of the Institute of Brewing, 2009, 115, 95-104.	2.3	15
35	Mapping species differences for adventitious rooting in a Corymbia torelliana × Corymbia citriodora subspecies variegata hybrid. Tree Genetics and Genomes, 2008, 4, 715-725.	1.6	28

Assessing for genetic and environmental effects on ruminant feed quality in barley (Hordeum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 1.2

ROBERT HENRY

#	Article	IF	CITATIONS
37	Differential LongSAGE tag abundance analysis in a barley seed germination time course and validation with relative real-time RT-PCR. Plant Science, 2008, 175, 858-867.	3.6	8
38	SAGE of the developing wheat caryopsis. Plant Biotechnology Journal, 2007, 5, 69-83.	8.3	49
39	Measurement of genetic and environmental variation in barley (Hordeum vulgare) grain hardness. Journal of Cereal Science, 2007, 46, 82-92.	3.7	44
40	Abundant transcripts of malting barley identified by serial analysis of gene expression (SAGE). Plant Biotechnology Journal, 2006, 4, 289-301.	8.3	37
41	Congruence in QTL for adventitious rooting in Pinus elliottii × Pinus caribaea hybrids resolves between and within-species effects. Molecular Breeding, 2006, 18, 11-28.	2.1	16
42	Selecting for increased barley grain size. Journal of Cereal Science, 2006, 43, 198-208.	3.7	34
43	DNA banks and their role in facilitating the application of genomics to plant germplasm. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 64-70.	0.8	11
44	Isolation and partial characterisation of a putative monoterpene synthase from Melaleuca alternifolia. Plant Physiology and Biochemistry, 2004, 42, 875-882.	5.8	16
45	The promoter of the asi gene directs expression in the maternal tissues of the seed in transgenic barley. Plant Molecular Biology, 2003, 52, 787-800.	3.9	26
46	Genes associated with the end of dormancy in grapes. Functional and Integrative Genomics, 2003, 3, 144-152.	3.5	56
47	Single-nucleotide polymorphism detection in plants using a single-stranded pyrosequencing protocol with a universal biotinylated primer. Analytical Biochemistry, 2003, 317, 166-170.	2.4	38
48	Genetics of physical wood properties and early growth in a tropical pine hybrid. Canadian Journal of Forest Research, 2003, 33, 1923-1932.	1.7	6
49	Branch architecture QTL for Pinus elliottii var. elliottii � Pinus caribaea var. hondurensis hybrids. Annals of Forest Science, 2002, 59, 617-625.	2.0	21
50	Isolation of genes involved in secondary metabolism from Melaleuca alternifolia (Cheel) using expressed sequence tags (ESTs). Plant Science, 2002, 162, 9-15.	3.6	21
51	Measurement of green fluorescent protein concentration in single cells by image analysis. Analytical Biochemistry, 2002, 310, 84-92.	2.4	35
52	Analysis of grape ESTs: global gene expression patterns in leaf and berry. Plant Science, 2000, 159, 87-95.	3.6	64
53	Identification of the creatine binding domain of creatine kinase by photoaffinity labeling. BBA - Proteins and Proteomics, 1998, 1387, 80-88.	2.1	9
54	Dichloroaromatic phosphoguanidines are potent inhibitors but very poor substrates for cytosolic creatine kinase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1357, 49-56.	4.1	2

ROBERT HENRY

#	Article	IF	CITATIONS
55	N-Dibenzylphospho-N′-3-(2,6-dichlorophenyl)propyl-guanidine is a bisubstrate-analog for creatine kinase. BBA - Proteins and Proteomics, 1997, 1342, 83-89.	2.1	5
56	Synthesis and Differential Properties of Creatine Analogues as Inhibitors for Human Creatine Kinase Isoenzymes. FEBS Journal, 1996, 238, 446-452.	0.2	8
57	Interaction of Apoprotein from Porcine High-Density Lipoprotein with Dimyristoyl Lecithin. 2. Nature of Lipid-Protein Interaction. FEBS Journal, 1976, 64, 549-563.	0.2	75
58	The Interaction of Apoprotein from Porcine High-Density Lipoprotein with Dimyristoyl Phosphatidylcholine. FEBS Journal, 1974, 48, 583-594.	0.2	38