Tetsuya Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10886762/publications.pdf

Version: 2024-02-01

25 papers 845

687363 13 h-index 18 g-index

26 all docs

26 docs citations

times ranked

26

1227 citing authors

#	Article	IF	CITATIONS
1	The Akt signaling pathway contributes to postconditioning $\hat{a} \in \mathbb{N}$ s protection against stroke; the protection is associated with the MAPK and PKC pathways. Journal of Neurochemistry, 2008, 105, 943-955.	3.9	156
2	Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain, 2015, 138, 1932-1948.	7.6	94
3	Angiogenesis in the ischemic core: A potential treatment target?. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 753-769.	4.3	89
4	Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1461-1474.	4.3	81
5	Therapeutic Strategies to Attenuate Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment for Acute Ischemic Stroke. Journal of Atherosclerosis and Thrombosis, 2017, 24, 240-253.	2.0	75
6	Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats. Scientific Reports, 2017, 7, 42582.	3.3	69
7	Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged $3\hat{a} \in \mathbb{Z}^2$ -phosphate and $3\hat{a} \in \mathbb{Z}^2$ -phosphoglycolate ends. Nucleic Acids Research, 2007, 35, 3797-3809.	14.5	60
8	Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression. PLoS ONE, 2017, 12, e0170623.	2.5	39
9	Mechanisms and prevention of sudden death in multiple system atrophy. Parkinsonism and Related Disorders, 2016, 30, 1-6.	2.2	36
10	Biochemical and histopathological alterations in TAR DNAâ€binding proteinâ€43 after acute ischemic stroke in rats. Journal of Neurochemistry, 2011, 116, 957-965.	3.9	33
11	Vascular Dysfunction Induced by Mercury Exposure. International Journal of Molecular Sciences, 2019, 20, 2435.	4.1	27
12	Effects of Angiopoietin-1 on Hemorrhagic Transformation and Cerebral Edema after Tissue Plasminogen Activator Treatment for Ischemic Stroke in Rats. PLoS ONE, 2014, 9, e98639.	2.5	22
13	Natural course and potential prognostic factors for sleep-disordered breathing in multiple system atrophy. Sleep Medicine, 2017, 34, 13-17.	1.6	19
14	A novel therapeutic approach using peripheral blood mononuclear cells preconditioned by oxygen-glucose deprivation. Scientific Reports, 2019, 9, 16819.	3.3	13
15	A Fulminant Case of Granulomatosis with Polyangiitis with Meningeal and Parenchymal Involvement. Case Reports in Neurology, 2015, 7, 101-104.	0.7	7
16	Predictors of cognitive impairment in multiple system atrophy. Journal of the Neurological Sciences, 2018, 388, 128-132.	0.6	7
17	Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death. PLoS ONE, 2015, 10, e0128844.	2.5	6
18	Lithium treatment reduces brain injury induced by focal ischemia with partial reperfusion and the protective mechanisms dispute the importance of akt activity., 2012, 3, 226-33.		6

#	Article	IF	CITATIONS
19	Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. Neurology and Clinical Neuroscience, 2013, 1, 201-208.	0.4	5
20	Pleiotropic Protective Effects of Progranulin in the Treatment of Ischemic Stroke., 2019, , 157-167.		1
21	Translational research that enables inhibition of hemorrhagic transformation after tissue plasminogen activator treatment for ischemic stroke. No Junkan Taisha = Cerebral Blood Flow and Metabolism, 2015, 26, 93-97.	0.0	0
22	Ischemic tolerance: mechanism of neuroprotective effect and clinical applications. No Junkan Taisha = Cerebral Blood Flow and Metabolism, 2015, 26, 197-202.	0.0	0
23	Treatment against hemorrhagic transformation after delayed tPA treatment that targets vascular remodeling factors. Nosotchu, 2015, 37, 188-193.	0.1	O
24	Multiple therapeutic effects of a growth factor, progranulin on ischemic brain injury. No Junkan Taisha = Cerebral Blood Flow and Metabolism, 2016, 27, 265-269.	0.0	0
25	Cell-therapy using microglia to prompt functional recovery after ischemic stroke. No Junkan Taisha = Cerebral Blood Flow and Metabolism, 2017, 28, 315-320.	0.0	0