Silja Mordhorst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1088656/publications.pdf

Version: 2024-02-01

840776 996975 15 602 11 15 citations h-index g-index papers 15 15 15 460 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A bicyclic <i>S</i> -adenosylmethionine regeneration system applicable with different nucleosides or nucleotides as cofactor building blocks. RSC Chemical Biology, 2021, 2, 883-891.	4.1	24
2	Posttranslationally Acting Arginases Provide a Ribosomal Route to Nonâ€proteinogenic Ornithine Residues in Diverse Peptide Sequences. Angewandte Chemie - International Edition, 2020, 59, 21442-21447.	13.8	12
3	Posttranslationally Acting Arginases Provide a Ribosomal Route to Nonâ€proteinogenic Ornithine Residues in Diverse Peptide Sequences. Angewandte Chemie, 2020, 132, 21626-21631.	2.0	1
4	Round, round we go – strategies for enzymatic cofactor regeneration. Natural Product Reports, 2020, 37, 1316-1333.	10.3	115
5	Chorismatases – the family is growing. Organic and Biomolecular Chemistry, 2019, 17, 2092-2098.	2.8	6
6	Several Polyphosphate Kinaseâ€2 Enzymes Catalyse the Production of Adenosine 5′â€Polyphosphates. ChemBioChem, 2019, 20, 1019-1022.	2.6	39
7	Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3350-3355.	7.1	52
8	Asymmetric Câ€Alkylation by the <i>S</i> â€Adenosylmethionineâ€Dependent Methyltransferase SgvM. Angewandte Chemie - International Edition, 2017, 56, 4033-4036.	13.8	46
9	Asymmetric Câ€Alkylation by the <i>S</i> â€Adenosylmethionineâ€Dependent Methyltransferase SgvM. Angewandte Chemie, 2017, 129, 4091-4094.	2.0	29
10	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie, 2017, 129, 4095-4099.	2.0	42
11	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie - International Edition, 2017, 56, 4037-4041.	13.8	124
12	Functional and structural characterisation of a bacterial <i>O</i> â€methyltransferase and factors determining regioselectivity. FEBS Letters, 2017, 591, 312-321.	2.8	34
13	A Flexible Polyphosphateâ€Driven Regeneration System for Coenzymeâ€A Dependent Catalysis. ChemCatChem, 2017, 9, 4164-4168.	3.7	32
14	Regiocomplementary Oâ€Methylation of Catechols by Using Threeâ€Enzyme Cascades. ChemBioChem, 2015, 16, 2576-2579.	2.6	37
15	Cinnamic acid derivatives as inhibitors for chorismatases and isochorismatases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1477-1481.	2.2	9