
Lars Hillered

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10886252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal patterns of inflammation-related proteins measured in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage using multiplex Proximity Extension Assay technology. PLoS ONE, 2022, 17, e0263460.	1.1	4
2	Arterial Oxygenation in Traumatic Brain Injury—Relation to Cerebral Energy Metabolism, Autoregulation, and Clinical Outcome. Journal of Intensive Care Medicine, 2021, 36, 1075-1083.	1.3	18
3	Mechanical Reperfusion Following Prolonged Global Cerebral Ischemia Attenuates Brain Injury. Journal of Cardiovascular Translational Research, 2021, 14, 338-347.	1.1	2
4	CBF changes and cerebral energy metabolism during hypervolemia, hemodilution, and hypertension therapy in patients with poor-grade subarachnoid hemorrhage. Journal of Neurosurgery, 2021, 134, 555-564.	0.9	7
5	Autoregulatory or Fixed Cerebral Perfusion Pressure Targets in Traumatic Brain Injury: Determining Which Is Better in an Energy Metabolic Perspective. Journal of Neurotrauma, 2021, 38, 1969-1978.	1.7	21
6	Systemic Hyperthermia in Traumatic Brain Injury—Relation to Intracranial Pressure Dynamics, Cerebral Energy Metabolism, and Clinical Outcome. Journal of Neurosurgical Anesthesiology, 2021, 33, 329-336.	0.6	10
7	Mild Hyperventilation in Traumatic Brain Injury—Relation to Cerebral Energy Metabolism, Pressure Autoregulation, and Clinical Outcome. World Neurosurgery, 2020, 133, e567-e575.	0.7	26
8	Arterial lactate in traumatic brain injury – Relation to intracranial pressure dynamics, cerebral energy metabolism and clinical outcome. Journal of Critical Care, 2020, 60, 218-225.	1.0	15
9	Neurointensive Care Unit as a Platform for Advanced ClinicalÂResearch. , 2020, , 647-658.		1
10	Acute Inflammatory Biomarker Responses to Diffuse Traumatic Brain Injury in the Rat Monitored by a Novel Microdialysis Technique. Journal of Neurotrauma, 2019, 36, 201-211.	1.7	36
11	High Arterial Glucose is Associated with Poor Pressure Autoregulation, High Cerebral Lactate/Pyruvate Ratio and Poor Outcome Following Traumatic Brain Injury. Neurocritical Care, 2019, 31, 526-533.	1.2	23
12	Monitoring of Protein Biomarkers of Inflammation in Human Traumatic Brain Injury Using Microdialysis and Proximity Extension Assay Technology in Neurointensive Care. Journal of Neurotrauma, 2019, 36, 2872-2885.	1.7	32
13	Interleukin-6 Levels in Cerebrospinal Fluid and Plasma in Patients with Severe Spontaneous Subarachnoid Hemorrhage. World Neurosurgery, 2019, 122, e612-e618.	0.7	20
14	Daily systemic energy expenditure in the acute phase of aneurysmal subarachnoid hemorrhage. Upsala Journal of Medical Sciences, 2019, 124, 254-259.	0.4	5
15	The Fluid Percussion Injury Rodent Model in Preclinical Research on Traumatic Brain Injury. Neuromethods, 2019, , 3-18.	0.2	1
16	Rapid amyloidâ€Î² oligomer and protofibril accumulation in traumatic brain injury. Brain Pathology, 2018, 28, 451-462.	2.1	31
17	Early low cerebral blood flow and high cerebral lactate: prediction of delayed cerebral ischemia in subarachnoid hemorrhage. Journal of Neurosurgery, 2018, 128, 1762-1770.	0.9	35
18	Interleukin-33 Promotes Recruitment of Microglia/Macrophages in Response to Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 3173-3182.	1.7	45

#	Article	IF	CITATIONS
19	The influence of hyperthermia on intracranial pressure, cerebral oximetry and cerebral metabolism in traumatic brain injury. Upsala Journal of Medical Sciences, 2017, 122, 177-184.	0.4	21
20	Rapid Bolus Administration Does not Increase The Extravasation Rate of Albumin. Shock, 2017, 47, 514-519.	1.0	5
21	Mechanical reperfusion with leucocyte-filtered blood does not prevent injury following global cerebral ischaemia. European Journal of Cardio-thoracic Surgery, 2016, 51, ezw367.	0.6	1
22	Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β. European Journal of Neuroscience, 2016, 43, 1016-1033.	1.2	19
23	The Early Endocrine Stress Response in Experimental Subarachnoid Hemorrhage. PLoS ONE, 2016, 11, e0151457.	1.1	6
24	Effects of Tigecycline and Doxycycline on Inflammation and Hemodynamics in Porcine Endotoxemia. Shock, 2015, 43, 604-611.	1.0	8
25	Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Medicine, 2015, 41, 1517-1528.	3.9	263
26	Extracellular Ezrin: A Novel Biomarker for Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 244-251.	1.7	10
27	Metabolic Pattern of the Acute Phase of Subarachnoid Hemorrhage in a Novel Porcine Model: Studies with Cerebral Microdialysis with High Temporal Resolution. PLoS ONE, 2014, 9, e99904.	1.1	7
28	Monitoring of Cerebral Blood Flow and Metabolism Bedside in Patients with Subarachnoid Hemorrhage ââ,¬â€œ A Xenon-CT and Microdialysis Study. Frontiers in Neurology, 2014, 5, 89.	1.1	18
29	Cerebral Microdialysis for Protein Biomarker Monitoring in the Neurointensive Care Setting ââ,¬â€œ A Technical Approach. Frontiers in Neurology, 2014, 5, 245.	1.1	30
30	Escalated handling of young C57BL/6 mice results in altered Morris water maze performance. Upsala Journal of Medical Sciences, 2014, 119, 1-9.	0.4	22
31	Brain Tissue Oxygenation and Cerebral Metabolic Patterns in Focal and Diffuse Traumatic Brain Injury. Frontiers in Neurology, 2014, 5, 64.	1.1	22
32	Monitoring of β-Amyloid Dynamics after Human Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 42-55.	1.7	54
33	The Neurological Wake-up Test Does not Alter Cerebral Energy Metabolism and Oxygenation in Patients with Severe Traumatic Brain Injury. Neurocritical Care, 2014, 20, 413-426.	1.2	32
34	Refined Microdialysis Method for Protein Biomarker Sampling in Acute Brain Injury in the Neurointensive Care Setting. Analytical Chemistry, 2014, 86, 8671-8679.	3.2	30
35	Identification of human cerebrospinal fluid proteins and their distribution in an in vitro microdialysis sampling system. European Journal of Pharmaceutical Sciences, 2014, 57, 34-40.	1.9	13
36	Interacting Chemokine Signals Regulate Dendritic Cells in Acute Brain Injury. PLoS ONE, 2014, 9, e104754.	1.1	31

#	Article	IF	CITATIONS
37	Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes. Journal of Neuroinflammation, 2013, 10, 44.	3.1	55
38	Identification of Injury Specific Proteins in a Cell Culture Model of Traumatic Brain Injury. PLoS ONE, 2013, 8, e55983.	1.1	37
39	Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates. PLoS ONE, 2013, 8, e68007.	1.1	53
40	Intestinal ischemia measured by intraluminal microdialysis. Scandinavian Journal of Clinical and Laboratory Investigation, 2012, 72, 59-66.	0.6	11
41	Interstitial F2-Isoprostane 8-Iso-PGF2α As a Biomarker of Oxidative Stress after Severe Human Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 766-775.	1.7	47
42	The neurological wake-up test increases stress hormone levels in patients with severe traumatic brain injury*. Critical Care Medicine, 2012, 40, 216-222.	0.4	61
43	Wake-up test and stress hormone levels in patients with brain injury. Critical Care Medicine, 2012, 40, 2002-2003.	0.4	Ο
44	Intraluminal intestinal microdialysis detects markers of hypoxia and cell damage in experimental necrotizing enterocolitis. Journal of Pediatric Surgery, 2012, 47, 1646-1651.	0.8	8
45	Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice. Journal of Neuroinflammation, 2012, 9, 17.	3.1	133
46	Multiplexed quantification of proteins adsorbed to surface-modified and non-modified microdialysis membranes. Analytical and Bioanalytical Chemistry, 2012, 402, 2057-2067.	1.9	36
47	Engulfing Astrocytes Protect Neurons from Contact-Induced Apoptosis following Injury. PLoS ONE, 2012, 7, e33090.	1.1	128
48	The Neurointensive Care Unit as a Platform for Advanced Clinical Research. , 2012, , 399-409.		0
49	Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice. FASEB Journal, 2012, 26, 711.3.	0.2	Ο
50	Cortisol and adrenocorticotropic hormone dynamics in the acute phase of subarachnoid haemorrhage. British Journal of Neurosurgery, 2011, 25, 684-692.	0.4	30
51	Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here?. British Journal of Pharmacology, 2011, 164, 1207-1229.	2.7	206
52	Cerebral glucose metabolism after traumatic brain injury in the rat studied by 13C-glucose and microdialysis. Acta Neurochirurgica, 2011, 153, 653-658.	0.9	22
53	Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. Journal of Neurosurgery, 2011, 115, 66-74.	0.9	32
54	Brain Energy Metabolism in Patients With Spontaneous Subarachnoid Hemorrhage and Global Cerebral Edema. Neurosurgery, 2010, 66, 1102-1110.	0.6	39

#	Article	IF	CITATIONS
55	Appearance of <i>Cxcl10</i> â€expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. European Journal of Neuroscience, 2010, 31, 852-863.	1.2	36
56	The Multivariate Concentric Square Field Test Reveals Behavioral Profiles of Risk Taking, Exploration, and Cognitive Impairment in Mice Subjected to Traumatic Brain Injury. Journal of Neurotrauma, 2010, 27, 1643-1655.	1.7	36
57	Genetic Deletion and Pharmacological Inhibition of Nogo-66 Receptor Impairs Cognitive Outcome after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2010, 27, 1297-1309.	1.7	42
58	Methodological Aspects on Microdialysis Protein Sampling and Quantification in Biological Fluids: An In Vitro Study on Human Ventricular CSF. Analytical Chemistry, 2010, 82, 4376-4385.	3.2	55
59	Vimentin and GFAP responses in astrocytes after contusion trauma to the murine brain. Restorative Neurology and Neuroscience, 2010, 28, 311-321.	0.4	39
60	Increased Cerebral Uptake of [18F]Fluoro-Deoxyglucose but not [1-14C]Glucose Early following Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2009, 26, 1281-1293.	1.7	16
61	Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. Journal of Neurosurgery, 2009, 110, 1227-1237.	0.9	127
62	Selective antegrade cerebral perfusion at two different temperatures compared to hypothermic circulatory arrest - an experimental study in the pig with microdialysis. Interactive Cardiovascular and Thoracic Surgery, 2009, 8, 647-653.	0.5	6
63	Relationship between intracranial hemodynamics and microdialysis markers of energy metabolism and glutamate-glutamine turnover in patients with subarachnoid hemorrhage. Journal of Neurosurgery, 2009, 111, 910-915.	0.9	24
64	Microdialysis patterns in subarachnoid hemorrhage patients with focus on ischemic events and brain interstitial glutamine levels. Acta Neurochirurgica, 2009, 151, 437-446.	0.9	24
65	Temporal patterns of interstitial pyruvate and amino acids after subarachnoid haemorrhage are related to the level of consciousness—a clinical microdialysis study. Acta Neurochirurgica, 2009, 151, 771-780.	0.9	15
66	Amyloidâ€Ĵ² protofibril levels correlate with spatial learning in Arctic Alzheimer's disease transgenic mice. FEBS Journal, 2009, 276, 995-1006.	2.2	79
67	Neutralization of interleukinâ€1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. European Journal of Neuroscience, 2009, 30, 385-396.	1.2	174
68	Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. Journal of Neuroscience Methods, 2009, 177, 469-478.	1.3	64
69	The Nitrone Free Radical Scavenger NXY-059 Is Neuroprotective when Administered after Traumatic Brain Injury in the Rat. Journal of Neurotrauma, 2008, 25, 1449-1457.	1.7	31
70	Distinct Cellular Patterns of Upregulated Chemokine Expression Supporting a Prominent Inflammatory Role in Traumatic Brain Injury. Journal of Neurotrauma, 2008, 25, 959-974.	1.7	146
71	Nonischemic energy metabolic crisis in acute brain injury*. Critical Care Medicine, 2008, 36, 2952-2953.	0.4	17
72	T Lymphocyte Trafficking: A Novel Target for Neuroprotection in Traumatic Brain Injury. Journal of Neurotrauma, 2007, 24, 1295-1307.	1.7	87

#	Article	IF	CITATIONS
73	Cerebral Glutamine and Glutamate Levels in Relation to Compromised Energy Metabolism: A Microdialysis Study in Subarachnoid Hemorrhage Patients. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1309-1317.	2.4	93
74	Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Current Opinion in Critical Care, 2006, 12, 112-118.	1.6	111
75	Energy Metabolic Changes in the Early Post-injury Period Following Traumatic Brain Injury in Rats. Neurochemical Research, 2006, 31, 1085-1093.	1.6	44
76	Genetically modified bone morphogenetic protein signalling Alters traumatic brain injury-induced gene expression responses in the adult mouse. Journal of Neuroscience Research, 2006, 84, 47-57.	1.3	21
77	Correlation of Hippocampal Morphological Changes and Morris Water Maze Performance after Cortical Contusion Injury in Rats. Neurosurgery, 2005, 57, 154-163.	0.6	33
78	Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates. Journal of Neurosurgery, 2005, 102, 1076-1084.	0.9	60
79	Cerebral interstitial levels of glutamate and glutamine after intravenous administration of nutritional amino acids in neurointensive care patients. Neuroscience Letters, 2005, 384, 7-10.	1.0	13
80	Translational Neurochemical Research in Acute Human Brain Injury: The Current Status and Potential Future for Cerebral Microdialysis. Journal of Neurotrauma, 2005, 22, 3-41.	1.7	357
81	Assessment of the effects of the cyclooxygenase-2 inhibitor rofecoxib on visuospatial learning and hippocampal cell death following kainate-induced seizures in the rat. Cognitive Brain Research, 2005, 25, 826-832.	3.3	15
82	Oxygen Free Radical-Dependent Activation of Extracellular Signal-Regulated Kinase Mediates Apoptosis-Like Cell Death after Traumatic Brain Injury. Journal of Neurotrauma, 2004, 21, 1168-1182.	1.7	75
83	Energy Dysfunction as a Predictor of Outcome after Moderate or Severe Head Injury: Indices of Oxygen, Glucose, and Lactate Metabolism. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1239-1250.	2.4	284
84	Microdialysis for Neurochemical Monitoring of the Human Brain. Scandinavian Cardiovascular Journal, 2003, 37, 13-17.	0.4	18
85	Cyclooxygenase-2, Prostaglandin Synthases, and Prostaglandin H2Metabolism in Traumatic Brain Injury in the Rat. Journal of Neurotrauma, 2002, 19, 1051-1064.	1.7	73
86	Effect of Traumatic Brain Injury and Nitrone Radical Scavengers on Relative Changes in Regional Cerebral Blood Flow and Glucose Uptake in Rats. Journal of Neurotrauma, 2002, 19, 1139-1153.	1.7	35
87	Microdialysis measurements demonstrate a shift to nonoxidative glucose metabolism in rat pancreatic islets transplanted beneath the renal capsule. Surgery, 2002, 132, 487-494.	1.0	24
88	Effects of Methylprednisolone on Extracellular Lactic Acidosis and Amino Acids After Severe Compression Injury of Rat Spinal Cord. Journal of Neurochemistry, 2002, 66, 1125-1130.	2.1	32
89	Middle Cerebral Artery Occlusion and Reperfusion in Primates Monitored by Microdialysis and Sequential Positron Emission Tomography. Stroke, 2001, 32, 1574-1580.	1.0	79
90	Cognitive and histopathological outcome after weight-drop brain injury in the rat: influence of systemic administration of monoclonal antibodies to ICAM-1. Acta Neuropathologica, 2001, 102, 246-256.	3.9	19

#	Article	IF	CITATIONS
91	Changes in mACh, NMDA and GABAAreceptor binding after lateral fluid-percussion injury:in vitroautoradiography of rat brain frozen sections. Journal of Neurochemistry, 2001, 78, 417-423.	2.1	50
92	Extracellular amino acid levels measured with intracerebral microdialysis in the model of posttraumatic epilepsy induced by intracortical iron injection. Epilepsy Research, 2001, 43, 135-144.	0.8	49
93	Paradoxical Increase in Neuronal DNA Fragmentation after Neuroprotective Free Radical Scavenger Treatment in Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 344-350.	2.4	46
94	Effects of the Nitrone Radical Scavengers PBN and S-PBN on In vivo Trapping of Reactive Oxygen Species after Traumatic Brain Injury in Rats. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1259-1267.	2.4	57
95	Intracerebral microdialysis in neurointensive care: the use of urea as an endogenous reference compound. Journal of Neurosurgery, 2001, 94, 397-402.	0.9	68
96	Free Radical Scavenger Posttreatment Improves Functional and Morphological Outcome after Fluid Percussion Injury in the Rat. Journal of Neurotrauma, 2001, 18, 821-832.	1.7	76
97	Monitoring of Reactive Oxygen Species Production after Traumatic Brain Injury in Rats with Microdialysis and the 4-Hydroxybenzoic Acid Trapping Method. Journal of Neurotrauma, 2001, 18, 1217-1227.	1.7	72
98	Expression of ICAM-1 and CD11b After Experimental Spinal Cord Injury in Rats. Journal of Neurotrauma, 1999, 16, 165-173.	1.7	52
99	Mitochondrial Function and Energy Metabolism after Hypoxia—Ischemia in the Immature Rat Brain: Involvement of NMDA-Receptors. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 297-304.	2.4	108
100	Involvement of Reactive Oxygen Species in Membrane Phospholipid Breakdown and Energy Perturbation After Traumatic Brain Injury in the Rat. Journal of Neurotrauma, 1998, 15, 521-530.	1.7	90
101	Pretreatment with α-Phenyl- <i>N</i> -tert-butyl-nitrone (PBN) Improves Energy Metabolism after Spinal Cord Injury in Rats. Journal of Neurotrauma, 1997, 14, 469-476.	1.7	19
102	Effects of Moderate Hypothermia on Extracellular Lactic Acid and Amino Acids after Severe Compression Injury of Rat Spinal Cord. Journal of Neurotrauma, 1997, 14, 63-69.	1.7	33
103	Glycerol as a marker for post-traumatic membrane phospholipid degradation in rat brain. NeuroReport, 1997, 8, 1457-1460.	0.6	98
104	Expression of serine/threonine kinase receptors in traumatic brain injury. NeuroReport, 1997, 8, 475-479.	0.6	56
105	Effect of 21-aminosteroid on extracellular energy-related metabolites and amino acids after compression injury of rat spinal cord. Experimental Brain Research, 1997, 113, 1-4.	0.7	9
106	Up-regulation of intercellular adhesion molecule 1 in cerebral microvessels after cortical contusion trauma in a rat model. Acta Neuropathologica, 1997, 94, 16-20.	3.9	31
107	Delayed Treatment with α-Phenyl-N-tert-butyl Nitrone (PBN) Attenuates Secondary Mitochondrial Dysfunction after Transient Focal Cerebral Ischemia in the Rat. Neurobiology of Disease, 1996, 3, 149-157.	2.1	127
108	Changes of Extracellular Levels of Amino Acids after Graded Compression Trauma to the Spinal Cord: An Experimental Study in the Rat Using Microdialysis. Journal of Neurotrauma, 1996, 13, 537-548.	1.7	83

#	Article	lF	CITATIONS
109	Changes in microtubule-associated protein 2 and amyloid precursor protein immunoreactivity following traumatic brain injury in rat: influence of MK-801 treatment. Brain Research, 1996, 719, 161-171.	1.1	85
110	Simultaneous Intracerebral Microdialysis and Positron Emission Tomography in the Detection of Ischemia in Patients with Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 637-644.	2.4	180
111	Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. Journal of Neurosurgery, 1996, 84, 606-616.	0.9	228
112	Continuous Measurement of Changes in Regional Cerebral Blood Flow following Cortical Compression Contusion Trauma in the Rat. Journal of Neurotrauma, 1996, 13, 201-207.	1.7	58
113	Traumatic brain injury in rat produces changes of β-amyloid precursor protein immunoreactivity. NeuroReport, 1995, 6, 357-360.	0.6	87
114	Parabanic acid for monitoring of oxygen radical activity in the injured human brain. NeuroReport, 1995, 6, 1816.	0.6	104
115	Influence of Perfusate Glucose Concentration on Dialysate Lactate, Pyruvate, Aspartate, and Glutamate Levels Under Basal and Hypoxic Conditions: A Microdialysis Study in Rat Brain. Journal of Neurochemistry, 1995, 65, 257-262.	2.1	51
116	Microdialysis for Neurochemical Monitoring in Human Brain Injuries. , 1995, , 59-63.		6
117	Epileptic seizure activity in the acute phase following cortical impact trauma in rat. Brain Research, 1994, 637, 227-232.	1.1	129
118	Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. Journal of Neurosurgery, 1992, 76, 72-80.	0.9	354
119	Seizure related elevations of extracellular amino acids in human focal epilepsy. Neuroscience Letters, 1992, 140, 30-32.	1.0	147
120	Intracerebral Microdialysis of Extracellular Amino Acids in the Human Epileptic Focus. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 873-876.	2.4	134
121	Microdialysis for metabolic monitoring in cerebral ischemia and trauma: Experimental and clinical studies. Handbook of Behavioral Neuroscience, 1991, , 389-405.	0.0	6
122	Trauma-induced increase of extracellular ascorbate in rat cerebral cortex. Neuroscience Letters, 1990, 113, 328-332.	1.0	45
123	Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. Journal of Neuroscience Research, 1988, 20, 451-456.	1.3	55
124	Increased extracellular levels of ascorbate in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. Neuroscience Letters, 1988, 95, 286-290.	1.0	81
125	Lactic Acidosis and Recovery of Mitochondrial Function following Forebrain Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1985, 5, 259-266.	2.4	140
126	Influence of <i>in vitro</i> Lactic Acidosis and Hypercapnia on Respiratory Activity of Isolated Rat Brain Mitochondria. Journal of Cerebral Blood Flow and Metabolism, 1984, 4, 430-437.	2.4	143

#	Article	IF	CITATIONS
127	Mitochondrial Response to Transient Forebrain Ischemia and Recirculation in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1984, 4, 438-446.	2.4	127
128	Respiratory Activity of Isolated Rat Brain Mitochondria following in vitro Exposure to Oxygen Radicals. Journal of Cerebral Blood Flow and Metabolism, 1983, 3, 207-214.	2.4	173
129	Mn2+ prevents the Ca2+ -induced inhibition of ATP synthesis in brain mitochondria. FEBS Letters, 1983, 154, 247-250.	1.3	22
130	Potential use and limitations of microdialysis for monitoring of neurochemical changes after TBI. , 0, , 82-91.		0
131	INCREASED CEREBRAL UPTAKE OF [18F]FLUORO-DEOXYGLUCOSE BUT NOT [1-14C]GLUCOSE EARLY FOLLOWING TRAUMATIC BRAIN INJURY IN RATS. Journal of Neurotrauma, 0, , 110306202455053.	1.7	0