Youngmi Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10885428/publications.pdf

Version: 2024-02-01

25 papers

3,555 citations

279487 23 h-index 610482 24 g-index

26 all docs

26 docs citations

26 times ranked 3479 citing authors

#	Article	IF	CITATIONS
1	Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology, 2019, 37, 518-531.	4.9	183
2	Hydrothermal Pretreatment of Lignocellulosic Biomass for Bioethanol Production., 2017,, 181-205.		12
3	Hydrolysisâ€determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnology and Bioengineering, 2015, 112, 677-687.	1.7	116
4	Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2015, 112, 252-262.	1.7	283
5	Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology and Bioengineering, 2015, 112, 447-456.	1.7	207
6	Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnology and Bioengineering, 2014, 111, 254-263.	1.7	99
7	Reaction mechanisms and kinetics of xyloâ€oligosaccharide hydrolysis by dicarboxylic acids. AICHE Journal, 2013, 59, 188-199.	1.8	48
8	Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood. Bioresource Technology, 2013, 135, 30-38.	4.8	132
9	Cassava Starch Pearls as a Desiccant for Drying Ethanol. Industrial & Engineering Chemistry Research, 2011, 50, 8678-8685.	1.8	25
10	Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresource Technology, 2011, 102, 11097-11104.	4.8	62
11	Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresource Technology, 2011, 102, 11080-11088.	4.8	54
12	Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresource Technology, 2011, 102, 11089-11096.	4.8	93
13	Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 2011, 48, 408-415.	1.6	398
14	Deactivation of cellulases by phenols. Enzyme and Microbial Technology, 2011, 48, 54-60.	1.6	436
15	Effect of compositional variability of distillers' grains on cellulosic ethanol production. Bioresource Technology, 2010, 101, 5385-5393.	4.8	39
16	Inhibition of cellulases by phenols. Enzyme and Microbial Technology, 2010, 46, 170-176.	1.6	403
17	Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels, 2010, 3, 27.	6.2	178
18	Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnology Progress, 2009, 25, 340-348.	1.3	142

Youngmi Kim

#	Article	IF	CITATION
19	Liquid Hot Water Pretreatment of Cellulosic Biomass. Methods in Molecular Biology, 2009, 581, 93-102.	0.4	73
20	Ethanol Production from Maize. Biotechnology in Agriculture and Forestry, 2009, , 347-364.	0.2	25
21	Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers' grains at high-solids loadings. Bioresource Technology, 2008, 99, 5206-5215.	4.8	131
22	Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distillers' grains. Bioresource Technology, 2008, 99, 5177-5192.	4.8	44
23	Cellulose conversion in dry grind ethanol plants. Bioresource Technology, 2008, 99, 5157-5159.	4.8	15
24	Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresource Technology, 2008, 99, 5165-5176.	4.8	287
25	Plug-Flow Reactor for Continuous Hydrolysis of Glucans and Xylans from Pretreated Corn Fiber. Energy & Fuels, 2005, 19, 2189-2200.	2.5	58