
Christos Zamioudis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10884538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 2012, 28, 489-521.	9.4	2,396
2	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	7.8	2,193
3	Modulation of Host Immunity by Beneficial Microbes. Molecular Plant-Microbe Interactions, 2012, 25, 139-150.	2.6	783
4	Unraveling Root Developmental Programs Initiated by Beneficial <i>Pseudomonas</i> spp. Bacteria Â. Plant Physiology, 2013, 162, 304-318.	4.8	288
5	Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant Journal, 2018, 93, 166-180.	5.7	191
6	βâ€Glucosidase <scp>BGLU</scp> 42 is a <scp>MYB</scp> 72â€dependent key regulator of rhizobacteriaâ€induced systemic resistance and modulates iron deficiency responses in <i><scp>A</scp>rabidopsis</i> roots. New Phytologist, 2014, 204, 368-379.	7.3	188
7	Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 2015, 16, 539.	2.8	184
8	Rhizobacterial volatiles and photosynthesisâ€related signals coordinate <i><scp>MYB</scp>72</i> expression in Arabidopsis roots during onset of induced systemic resistance and ironâ€deficiency responses. Plant Journal, 2015, 84, 309-322.	5.7	171
9	Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control, 2013, 65, 14-23.	3.0	132
10	Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathology Journal, 2013, 29, 136-143.	1.7	106
11	Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 2021, 461, 245-263.	3.7	53
12	Type III Secretion System of Beneficial Rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Frontiers in Microbiology, 2019, 10, 1631.	3.5	36
13	Editorial: Beneficial Microbiota Interacting With the Plant Immune System. Frontiers in Plant Science, 2021, 12, 698902.	3.6	3