SÃ³nia P Miguel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1088308/publications.pdf Version: 2024-02-01

<u><u>SÃ3ΝΙΑ Ρ</u><u>ΜΙCUEL</u></u>

#	Article	IF	CITATIONS
1	Osmundea sp. macroalgal polysaccharide-based nanoparticles produced by flash nanocomplexation technique. International Journal of Biological Macromolecules, 2022, 204, 9-18.	3.6	5
2	Experimental Wound-Care Models: In Vitro/In Vivo Models and Recent Advances Based on Skin-on-a-Chip Models. , 2021, , 459-486.		0
3	Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Research, 2021, 58, 102395.	2.4	27
4	Biomedical Applications of Biodegradable Polymers in Wound Care. , 2021, , 509-597.		2
5	Swelling Analysis of Thermal and Chemical Crosslinked Konjac Glucomannan/Gellan Gum Cardiac Patch. , 2021, , .		1
6	Hyaluronic acid and vitamin E polyethylene glycol succinate functionalized gold-core silica shell nanorods for cancer targeted photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110778.	2.5	47
7	Xanthan Gum–Konjac Glucomannan Blend Hydrogel for Wound Healing. Polymers, 2020, 12, 99.	2.0	60
8	Poly (vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. International Journal of Pharmaceutics, 2020, 576, 118907.	2.6	57
9	Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Materials Science and Engineering C, 2020, 117, 111294.	3.8	67
10	Photocurable Polymeric Blends for Surgical Application. Materials, 2020, 13, 5681.	1.3	2
11	Hyaluronic acid—Based wound dressings: A review. Carbohydrate Polymers, 2020, 241, 116364.	5.1	387
12	Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2019, 181, 994-1003.	2.5	61
13	Microneedle-based delivery devices for cancer therapy: A review. Pharmacological Research, 2019, 148, 104438.	3.1	76
14	Development of a poly(vinyl alcohol)/lysine electrospun membrane-based drug delivery system for improved skin regeneration. International Journal of Pharmaceutics, 2019, 570, 118640.	2.6	45
15	Microstructural, mechanical and biological properties of hydroxyapatite - CaZrO3 biocomposites. Ceramics International, 2019, 45, 8195-8203.	2.3	18
16	Chitosan based-asymmetric membranes for wound healing: A review. International Journal of Biological Macromolecules, 2019, 127, 460-475.	3.6	186
17	Preparation of biodegradable functionalized polyesters aimed to be used as surgical adhesives. European Polymer Journal, 2019, 117, 442-454.	2.6	9
18	An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 1-22.	2.0	129

SÃ³NIA P MIGUEL

#	Article	IF	CITATIONS
19	Photocrosslinkable Nanofibrous Asymmetric Membrane Designed for Wound Dressing. Polymers, 2019, 11, 653.	2.0	23
20	Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon, 2019, 146, 513-523.	5.4	54
21	Functionalization of AuMSS nanorods towards more effective cancer therapies. Nano Research, 2019, 12, 719-732.	5.8	17
22	Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. International Journal of Biological Macromolecules, 2019, 121, 524-535.	3.6	108
23	In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2018, 165, 207-218.	2.5	59
24	Engineering star-shaped lactic acid oligomers to develop novel functional adhesives. Journal of Materials Research, 2018, 33, 1463-1474.	1.2	7
25	Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 130-141.	2.0	650
26	Bioinspired multilayer membranes as potential adhesive patches for skin wound healing. Biomaterials Science, 2018, 6, 1962-1975.	2.6	61
27	Electrospun polymeric nanofibres as wound dressings: A review. Colloids and Surfaces B: Biointerfaces, 2018, 169, 60-71.	2.5	272
28	Biofunctionalization of electrospun poly(caprolactone) fibers with Maillard reaction products for wound dressing applications. Reactive and Functional Polymers, 2018, 131, 191-202.	2.0	24
29	Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery. International Journal of Pharmaceutics, 2017, 519, 240-249.	2.6	38
30	Ibuprofen loaded PVA/chitosan membranes: A highly efficient strategy towards an improved skin wound healing. Carbohydrate Polymers, 2017, 159, 136-145.	5.1	111
31	Photocrosslinkable electrospun fiber meshes for tissue engineering applications. European Polymer Journal, 2017, 97, 210-219.	2.6	26
32	3D scaffolds coated with nanofibers displaying bactericidal activity for bone tissue applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 432-442.	1.8	7
33	Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofibrous Asymmetric Membranes Aimed for Wound Healing Applications. Polymers, 2017, 9, 183.	2.0	141
34	Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids and Surfaces B: Biointerfaces, 2017, 159, 7-15.	2.5	66
35	Nanogold POxylation: towards always-on fluorescent lung cancer targeting. RSC Advances, 2016, 6, 33631-33635.	1.7	12
36	Tumor spheroid assembly on hyaluronic acid-based structures: A review. Carbohydrate Polymers, 2016, 150, 139-148.	5.1	66

SÃ³nia P Miguel

#	Article	IF	CITATIONS
37	Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration. International Journal of Biological Macromolecules, 2016, 93, 1100-1110.	3.6	127
38	3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration. International Journal of Biological Macromolecules, 2016, 93, 1432-1445.	3.6	52
39	Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. Journal of Materials Science: Materials in Medicine, 2016, 27, 69.	1.7	26
40	Production and characterization of chitosan/gelatin/ \hat{l}^2 -TCP scaffolds for improved bone tissue regeneration. Materials Science and Engineering C, 2015, 55, 592-604.	3.8	128
41	Synthesis and characterization of a photocrosslinkable chitosan–gelatin hydrogel aimed for tissue regeneration. RSC Advances, 2015, 5, 63478-63488.	1.7	65
42	<i>In Vivo</i> High-Content Evaluation of Three-Dimensional Scaffolds Biocompatibility. Tissue Engineering - Part C: Methods, 2014, 20, 851-864.	1.1	26
43	PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	26
44	Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. Journal of Membrane Science, 2014, 469, 262-271.	4.1	106
45	Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydrate Polymers, 2014, 111, 366-373.	5.1	226
46	Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Materials Science and Engineering C, 2013, 33, 2958-2966.	3.8	143