Wanliang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10881859/publications.pdf

Version: 2024-02-01

		201674	189892
59	2,931	27	50
papers	citations	h-index	g-index
7.4	7.4	7.4	2125
74	74	74	3135
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pyrazinamide Inhibits Trans-Translation in <i>Mycobacterium tuberculosis</i> . Science, 2011, 333, 1630-1632.	12.6	475
2	Genetic Basis of Virulence Attenuation Revealed by Comparative Genomic Analysis of Mycobacterium tuberculosis Strain H37Ra versus H37Rv. PLoS ONE, 2008, 3, e2375.	2.5	200
3	Mechanisms of Pyrazinamide Action and Resistance. Microbiology Spectrum, 2014, 2, 1-12.	3.0	178
4	Energy production genes <i>sucB</i> and <i>ubiF</i> â€Âf are involved in persister survival and tolerance to multiple antibiotics and stresses in <i>Escherichia coli</i> . FEMS Microbiology Letters, 2010, 303, 33-40.	1.8	159
5	Mutations in <i>panD</i> encoding aspartate decarboxylase are associated with pyrazinamide resistance in <i>Mycobacterium tuberculosis</i> Emerging Microbes and Infections, 2013, 2, 1-5.	6.5	136
6	Identification of novel mutations associated with clofazimine resistance in <i>Mycobacterium tuberculosis</i> : TableÂ1 Journal of Antimicrobial Chemotherapy, 2015, 70, 2507-2510.	3.0	125
7	Aspartate decarboxylase (PanD) as a new target of pyrazinamide in <i>Mycobacterium tuberculosis</i> Emerging Microbes and Infections, 2014, 3, 1-8.	6.5	122
8	Identification of novel activity against <i>Borrelia burgdorferi</i> persisters using an FDA approved drug library. Emerging Microbes and Infections, 2014, 3, 1-8.	6.5	99
9	An Optimized SYBR Green I/PI Assay for Rapid Viability Assessment and Antibiotic Susceptibility Testing for Borrelia burgdorferi. PLoS ONE, 2014, 9, e111809.	2.5	92
10	Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2013, 68, 2477-2481.	3.0	67
11	An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: gene cloning, expression and characterization. Extremophiles, 2006, 10, 599-606.	2.3	65
12	Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin. Antibiotics, 2015, 4, 627-642.	3.7	64
13	PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2010, 65, 1237-1242.	3.0	51
14	Disruption of Membrane by Colistin Kills Uropathogenic Escherichia coli Persisters and Enhances Killing of Other Antibiotics. Antimicrobial Agents and Chemotherapy, 2016, 60, 6867-6871.	3.2	50
15	A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library. Frontiers in Microbiology, 2016, 7, 743.	3.5	49
16	Mycobacterium tuberculosis Mutations Associated with Reduced Susceptibility to Linezolid. Antimicrobial Agents and Chemotherapy, 2016, 60, 2542-2544.	3.2	49
17	Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2017, 72, 3272-3276.	3.0	46
18	Identification of Genes Involved in Bacteriostatic Antibiotic-Induced Persister Formation. Frontiers in Microbiology, 2018, 9, 413.	3.5	45

#	Article	IF	Citations
19	Identification of Additional Anti-Persister Activity against Borrelia burgdorferi from an FDA Drug Library. Antibiotics, 2015, 4, 397-410.	3.7	43
20	Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi. Frontiers in Medicine, 2017, 4, 169.	2.6	43
21	Identification of new compounds with high activity against stationary phase <i>Borrelia burgdorferi</i> from the NCI compound collection. Emerging Microbes and Infections, 2015, 4, 1-15.	6. 5	42
22	Mutation in <i>clpC1</i> encoding an ATP-dependent ATPase involved in protein degradation is associated with pyrazinamide resistance in <i>Mycobacterium tuberculosis</i> Emerging Microbes and Infections, 2017, 6, 1-2.	6.5	41
23	Identification of Essential Oils with Strong Activity against Stationary Phase Borrelia burgdorferi. Antibiotics, 2018, 7, 89.	3.7	41
24	Mutations in Efflux Pump Rv1258c (Tap) Cause Resistance to Pyrazinamide, Isoniazid, and Streptomycin in M. tuberculosis. Frontiers in Microbiology, 2019, 10, 216.	3 . 5	37
25	The molecular basis of pyrazinamide activity on Mycobacterium tuberculosis PanD. Nature Communications, 2020, 11, 339.	12.8	37
26	Stationary phase persister/biofilm microcolony of Borrelia burgdorferi causes more severe disease in a mouse model of Lyme arthritis: implications for understanding persistence, Post-treatment Lyme Disease Syndrome (PTLDS), and treatment failure. Discovery Medicine, 2019, 27, 125-138.	0.5	36
27	Characterization of a novel plasmid from extremely halophilic Archaea: nucleotide sequence and function analysis. FEMS Microbiology Letters, 2003, 221, 53-57.	1.8	34
28	Persister mechanisms in <i>Borrelia burgdorferi</i> : implications for improved intervention. Emerging Microbes and Infections, 2015, 4, 1-3.	6.5	31
29	Eradication of Biofilm-Like Microcolony Structures of Borrelia burgdorferi by Daunomycin and Daptomycin but not Mitomycin C in Combination with Doxycycline and Cefuroxime. Frontiers in Microbiology, 2016, 7, 62.	3.5	30
30	Identification of Anti-Persister Activity against Uropathogenic Escherichia coli from a Clinical Drug Library. Antibiotics, 2015, 4, 179-187.	3.7	29
31	Glycerol Uptake Is Important for L-Form Formation and Persistence in Staphylococcus aureus. PLoS ONE, 2014, 9, e108325.	2.5	27
32	Ceftriaxone Pulse Dosing Fails to Eradicate Biofilm-Like Microcolony B. burgdorferi Persisters Which Are Sterilized by Daptomycin/ Doxycycline/Cefuroxime without Pulse Dosing. Frontiers in Microbiology, 2016, 7, 1744.	3 . 5	25
33	Identification of essential oils with activity against stationary phase Staphylococcus aureus. BMC Complementary Medicine and Therapies, 2020, 20, 99.	2.7	25
34	Single nucleotide polymorphisms in efflux pumps genes in extensively drug resistant Mycobacterium tuberculosis isolates from Pakistan. Tuberculosis, 2017, 107, 20-30.	1.9	24
35	A Rapid Growth-Independent Antibiotic Resistance Detection Test by SYBR Green/Propidium Iodide Viability Assay. Frontiers in Medicine, 2018, 5, 127.	2.6	24
36	Novel Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	23

#	Article	IF	Citations
37	A Clinical Drug Library Screen Identifies Tosufloxacin as Being Highly Active against Staphylococcus aureus Persisters. Antibiotics, 2015, 4, 329-336.	3.7	21
38	Identification of Novel Mutations in LprG (<i>rv1411c</i>), <i>rv0521</i> , <i>rv3630</i> , <i>rv3630</i> , <i>rv0010c</i> , <i>ppsC</i> , and <i>cyp128</i> Associated with Pyrazinoic Acid/Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	17
39	Introducing RpsA Point Mutations \hat{l} "438A and D123A into the Chromosome of Mycobacterium tuberculosis Confirms Their Role in Causing Resistance to Pyrazinamide. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	16
40	Identification of Agents Active against Methicillin-Resistant Staphylococcus aureus USA300 from a Clinical Compound Library. Pathogens, 2017, 6, 44.	2.8	15
41	Activity of Sulfa Drugs and Their Combinations against Stationary Phase B. burgdorferi In Vitro. Antibiotics, 2017, 6, 10.	3.7	15
42	Identification of FDA-Approved Drugs with Activity against Stationary Phase Bartonella henselae. Antibiotics, 2019, 8, 50.	3.7	15
43	Effect of different drugs and drug combinations on killing stationary phase and biofilms recovered cells of Bartonella henselae in vitro. BMC Microbiology, 2020, 20, 87.	3.3	15
44	Evaluation of mycobacterial virulence using rabbit skin liquefaction model. Virulence, 2010, 1, 156-163.	4.4	14
45	Conditions and mutations affecting Staphylococcus aureus L-form formation. Microbiology (United) Tj ETQq1	1 0.784314 1.8	rgBT Overlo
46	Evaluation of Disulfiram Drug Combinations and Identification of Other More Effective Combinations against Stationary Phase Borrelia burgdorferi. Antibiotics, 2020, 9, 542.	3.7	12
47	Essential Oils with High Activity against Stationary Phase Bartonella henselae. Antibiotics, 2019, 8, 246.	3.7	11
48	Identification of Essential Oils Including Garlic Oil and Black Pepper Oil with High Activity against Babesia duncani. Pathogens, 2020, 9, 466.	2.8	10
49	Mechanisms of Pyrazinamide Action and Resistance. , 0, , 479-491.		10
50	Pyrazinoic Acid Inhibits the Bifunctional Enzyme (Rv2783) in Mycobacterium tuberculosis by Competing with tmRNA. Pathogens, 2019, 8, 230.	2.8	9
51	Increased expression of efflux pump genes in extensively drug-resistant isolates of Mycobacterium tuberculosis. International Journal of Mycobacteriology, 2016, 5, S150.	0.6	8
52	Varying effects of common tuberculosis drugs on enhancing clofazimine activity <i>in vitro</i> . Emerging Microbes and Infections, 2017, 6, 1-3.	6.5	7
53	Molecular mechanisms of clofazimine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2017, 72, 2943-2944.	3.0	7
54	Infection with persister forms of Staphylococcus aureus causes a persistent skin infection with more severe lesions in mice: failure to clear the infection by the current standard of care treatment. Discovery Medicine, 2019, 28, 7-16.	0.5	6

#	Article	IF	CITATIONS
55	Identification of drug candidates that enhance pyrazinamide activity from a clinical compound library. Emerging Microbes and Infections, 2017, 6, 1-3.	6.5	5
56	Activity of Pyrazinamide against Mycobacterium tuberculosis at Neutral pH in PZA-S1 Minimal Medium. Antibiotics, 2021, 10, 909.	3.7	5
57	Identification of essential oils with strong activity against stationary phase uropathogenic Escherichia coli. Discovery Medicine, 2019, 28, 179-188.	0.5	3
58	Identification and Ranking of Clinical Compounds with Activity Against Log-phase Growing Uropathogenic Escherichia coli. Current Drug Discovery Technologies, 2020, 17, 191-196.	1.2	2
59	Identification of a novel gene argJ involved in arginine biosynthesis critical for persister formation in Staphylococcus aureus. Discovery Medicine, 2020, 29, 65-77.	0.5	0